

Pre – Purchase Car Inspection

Mobile Application
Amy Rintoul

N00192537

Supervisor: Mohammed Cherbatji

Second Reader: Cyril

Year 4 2022-23

DL836 BSc (Hons) in Creative Computing

2 | P a g e

Abstract

The creation of a mobile application for pre-purchase automobile inspections was the goal

of this project. A business that inspects second-hand vehicles before a consumer turns over

their valuable money. Enabling the consumer to leave with confidence that they have

chosen the ideal vehicle. With a thorough 100+ element check, this service allays any

anxieties the consumer may have about the intimidating process of buying a vehicle.

Each examination looks at over 100 elements, including the engine, gearbox and chassis, as

well as minor issues. One of the company's highly skilled technicians will provide the

customer with a comprehensive report.

The developer conducted an interview with the business owner in order to create a fully

functional mobile application that meets the demands of the companies target audience.

The mobile application was developed for the users to interact with the mechanic with ease.

Allowing the users to book appointments through the app, choosing a specific mechanic and

a specific service and viewing any past or present reports that the user may have. The user

may also see any upcoming appointment they may have.

The mechanic may use the application to confirm bookings, show their availability, create

reports for a specific customer and see upcoming appointments.

Both the user and the mechanic can interact with each other through a messenger on the

mobile application.

The developer carried out testing throughout and after the implementation of the

application. This testing conducted of CRUD and navigation testing, User testing and testing

the backend though Insomnia. The outcomes demonstrate that the programme navigates to

satisfy the user's needs. Each test demonstrated that the user successfully travelled to each

screen to which they wished to browse.

The application isn’t fully functional, several of the functional requirements have not been

met. With more time and knowledge of React Native the developer would have gotten a

more successful finish to the application although the developer has created an extremely

strong backend and frontend with few unfinished elements.

3 | P a g e

Acknowledgements

Firstly, I would like to thank my supervisor Mohammed Cherbatji for his ongoing mentorship

throughout this whole process which wouldn’t have been possible without his continues

support and intelligence. His approach to frontend development and hard work is an

inspiration, which I aspire to emulate throughout my career. My heartfelt gratitude also

goes to Mohammed for his patience and understanding during the last 4 years of attending

IADT, He is a fantastic tutor from whom I have learned so much.

I am also extremely grateful to my brother, Danny Rintoul who continued to give valuable

and helpful recommendations during the planning stages of my thesis. Danny is a highly

qualified mechanic, bouncing ideas off each other and constantly receiving his feedback

became extremely beneficial and I am forever grateful to him.

Lastly, I would like to thank my family, friends and boyfriend for getting me through the last

4 years. Even though it seemed never ending, they persisted in pushing me all the way to

the finish line.

4 | P a g e

The incorporation of material without formal and proper acknowledgement (even with no

deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should

document this in your submitted work and if you have any doubt as to what level of

discussion/collaboration is acceptable, you should consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone else,

which may well bring you under suspicion. Do not to leave copies of your own files on a hard disk

where they can be accessed by other. Be aware that removable media, used to transfer work, may

also be removed and/or copied by others if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to

the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook.

Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual
assessment. This would include jointly developed solutions as well as one individual
giving a solution to another who then makes some changes and hands it up as their
own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own

work.

Student :

Signed

Failure to complete and submit this form may lead to an investigation into your work.

5 | P a g e

Table of Contents
1 Introduction .. 1

2 Research ... 2

2.1 Introduction... 2

2.2 Mobile Application .. 2

2.3 Software Development ... 4

2.3.2 API Development: .. 4

2.3.3 Back-End Development: ... 4

2.3.4 Front-End Development .. 5

2.4 Software Methodologies (SDM’s) ... 5

2.4.1 Agile Development Methodology .. 5

2.4.2 Waterfall .. 6

2.5 Software Development Approach ... 7

2.5.1 Native Development .. 7

2.5.2 Hybrid Development .. 8

2.6 Application Framework ... 10

2.6.1 React Native ... 10

2.6.2 Flutter ... 11

2.7 Conclusion ... 12

3 Requirements ... 13

3.1 Introduction... 13

3.2 Requirements gathering .. 13

3.2.1 Similar applications .. 13

3.2.2 Interviews ... 15

3.3 Requirements modelling ... 15

3.3.1 Personas ... 15

3.3.2 Functional requirements ... 18

3.3.3 Non-functional requirements .. 18

3.3.4 Use Case Diagrams ... 19

3.4 Feasibility ... 21

3.5 Conclusion ... 21

4 Design ... 22

6 | P a g e

4.1 Introduction... 22

4.2 Program Design ... 22

4.2.1 Technologies .. 22

4.2.2 Design Patterns .. 23

4.2.3 Application architecture .. 24

4.2.4 Database design ... 25

4.3 User interface design .. 26

4.3.1 Wireframe .. 26

4.3.2 User Flow Diagram ... 28

4.3.3 Style guide .. 29

4.4 Conclusion ... 34

5 Implementation .. 35

5.1 Introduction... 35

5.2 Scrum Methodology .. 35

5.3 Development environment ... 36

5.4 Backend & Data Management .. 37

5.5 Setting up the frontend environment ... 49

5.6 Conclusion ... 53

6 Testing .. 54

6.1 Introduction... 54

6.2 API Testing ... 54

6.2.1 GET request for all reports ... 55

6.2.2 GET request for reports associated to a specific user. 57

6.2.3 GET request for a report with a specific id. ... 58

6.2.4 POST request which creates a report. ... 60

6.2.5 PUT request which updates a specific report. ... 61

6.2.6 DELETE request made for a specific report ... 62

6.2.7 Bad request, errors .. 62

6.3 Functional Testing ... 64

6.3.1 Navigation .. 64

6.3.2 CRUD .. 67

6.3.3 Functional Testing Results ... 69

6.4 Conclusion ... 69

7 | P a g e

7 Project Management .. 70

7.1 Introduction... 70

7.1.1 Testing .. 70

7.2 SCRUM Methodology .. 70

7.3 Project Management Tools ... 70

7.3.1 Microsoft Planner .. 70

7.3.2 GitHub .. 71

7.4 Conclusion ... 72

8 Conclusion .. 73

8.1.1 Your views on the project .. 73

8.1.2 Working with a supervisor ... 74

8.1.3 Technical skills .. 74

8.1.4 Further competencies and skills .. 75

References ... 76

1 | P a g e

1

1 Introduction
Pre-purchase car inspections are conducted independently of car dealerships, with the

primary purpose of ensuring that the client's future vehicle is safe, roadworthy, and not a

waste of money. The overall aim for this project is to build a successful mobile application

using MERN Stack. The client can create an account and login. The application is designed

for clients to interact with mechanics through a messenger. Each client can choose which

service they want and which mechanic they would like to view their vehicle.

This chapter concludes that the developer will develop a mobile application using the MERN

Stack. The developer will use the Agile methodology and Native development for the

application.

The features, functions, and activities that must be fulfilled for the application to be

considered successful are covered in the requirements chapter. They provide the developer

with a precise set of guidelines to operate within and help them identify the many

objectives that need to be achieved.

The design chapter starts by providing a description of the project's application architecture

and design, covering database and process design. The developer will provide information

regarding the technologies that will be used to create the application and why they are

appropriate for the process. This chapter starts to demonstrate how the requirements and

the research come together before implementation.

The implementation chapter is a detailed description of the implementation through each

sprint, from start to finish of the backend api and the frontend interface. Each sprint

highlights the goal, learning outcome and any issues that occurred during this time.

The testing chapter is the process of evaluating the applications components with the

intentions of finding whether it satisfies the specified requirements or not.

2 | P a g e

2

2 Research

2.1 Introduction
The aim of this literature review is to explore and determine what is software development,

which is the best software development approach and what is the most suitable framework

for building a mobile application. This review opens with a discussion of mobile applications

and where we are now in terms of the rapid growth of this industry. Additionally, the

developer will investigate many forms of software development and software

methodologies, providing definitions for each along with its advantages and disadvantages

discovered via extensive study.

This review will cover briefly about mobile applications before pointing out some significant

statistics. We have truly grown reliant on our smartphones, and this development will only

increase rapidly. In every aspect of our everyday lives, we utalise mobile apps. Doing any

kind of fitness, we track our distance, heart rate, pace, mileage and the most important for

many people our calories. I need to remember something, but there is an app for that. If

you cannot find your TV remote, there is an app for that.

Choosing a software development approach can be the biggest dilemma when building an

app. There are three commonly known development approaches Native, Hybrid, Web.

Throughout this literature review, I will investigate Native and Hybrid approach and compile

a report on which is the stronger path to take for developing mobile apps. This review aims

to put forward an argument for using native rather than hybrid development.

What software development methodology (SDM) you are going to consider is one of the key

factors to consider before creating a mobile app. A multitude of issues arise when a SDM is

not implemented. It is an extremely crucial part of project management as it is a framework

for structuring, planning, and controlling the development of an information system. This

will decide whether a project succeeds or fails.

2.2 Mobile Application

A software programme created solely for use with a mobile device, such as a smartphone or
tablet, is known as a mobile application. Applications for mobile devices are classified as to
whether they are web-based, native, or hybrid. Throughout the review, these categories will
be discussed in depth. Each programme offers specialised functionality such as a game,
calculator, or mobile web browsing. (Mobile Application, 2020)

We have reached a point where mobile apps have come to make our lives effortless.

Everyone who owns a phone or tablet is familiar with using mobile apps whether for playing

a game, staying connected with family or friend or even tracking their fitness levels.

According to Buildfire “88% of mobile time is spent on apps.”

The first smartphone was invented in 1992 and released by IBM in 1994, which came with

built-in apps such as a phonebook, calendar, world clock, and calculator. (IBM, n.d)

Types of mobile operating systems which run specifically for mobile include Android, Apple

IOS, Blackberry OS and Windows. Each operating system has unique App stores. Android –

3 | P a g e

3

Google Play Store, Apple – Apple app store, Windows – Microsoft Store, Blackberry – App

World.

The apple app store opened on July 10, 2008, via an update to iTunes. Launched with
second-generation iPhone 3G which supported mobile apps. According to Buildfire “In 2022
2.87 million apps are available for download on the Google Play Store and 1.96 million apps
are available for download on the Apple App Store.” (Mobile App Download Statistics &
Usage Statistics (2023) - BuildFire, 2021)

In terms of application sectors and features, there are various distinct types of mobile

applications that a user may seek from the marketplace.

 Lifestyle, Entertainment/social media, and Gaming

These applications cover a wide range of personal lifestyle and social activities, including

dating, Fitness, Food and Music. Examples of these applications are Spotify, Tinder, Just Eat,

and Nike Training Club. Every day, users use each of these programmes; some do so

simultaneously, such as when using Spotify to listen to music and the Nike Training App

while out on a run or in the gym.

The entertainment industry is vast and highly competitive. It has become near impossible

for users to become bored as there are thousands of entertainments apps to choose from.

Disney+, YouTube, Netflix, PrimeVideo

Social Media apps are the most popular worldwide. Through virtual networks, social media

facilitates the exchange of ideas and information. There are 4.76 billion social media users

globally, which is equivalent to 60% of the population worldwide. According to Statista,

Facebook being the most used, as of January 2023 has 2.958 billion monthly active users.

(Statista) Instagram, Twitter, TikTok, Snapchat are all examples of social media applications,

and there are countless more.

In the app marketplaces for online gaming, as of 2023, there will be approximately 700,000
games, with 500,000 on Google Play and 200,000 on the Apple App Store. (Mobile Game
Market Trends for 2023 You Need to Know - Udonis, 2023)According to Statistics users are
anticipated to reach 2.32 billion in the mobile games industry by 2027. Among the most
popular games are Candy Crush Saga, Wordscapes, 8 Ball Pool, and many others.

 Utility

Most utility applications are pre-installed once a user purchases a mobile device or tablet.

Utility applications include the weather, calculator, Flashlight and Reminders. Although they

are not always as popular, without these applications we would be at a huge loss.

 Productivity

Applications for productivity are primarily concerned with staying organised, monitoring job

progress, composing documents, using your phone to make payments, sending emails,

4 | P a g e

4

booking hotels, and other activities. Productivity applications include Trello, Google

Drive/Calendar, Google Docs, Word, Microsoft To Do, Google/Apple Pay.

2.3 Software Development
IBM have defined Software Development as “a set of computer science activities dedicated

to the process of creating, designing, deploying, and supporting software.” (What Is

Software Development? | IBM, n.d.). So all instructions needed by a computer to function

correctly is known as software.

Software developers create software for end users all over the world by working across

multiple platforms and using development languages. Their responsibilities include software

research, design, implementation, and testing. Developers can create code, a database or

frontend servers.

The following is a list of various software types.

2.3.1.1 Application software

Computer programming, which is the process of creating and maintaining source code, is
referred to as application development. It Includes any other processes that led to the
finished application, such as research, new development, improvements, reuse, re-
engineering and maintenance. (What Is Software Development? | IBM, n.d.)

2.3.1.2 Programming software

Assists the programmer in creating additional software. Software for programming is

frequently referred to as a programming tool or a software development tool. Programming

software includes compilers, assemblers, interpreters etc.

2.3.1.3 System software

A program created to control the hardware, software, and resources of a computer,
including memory, CPU’s ad other hardware. There are multiple types of system software,
such as Windows, Linux, MacOS X, etc. Each system software has distinct characteristics.
(What Is System Software? | Simplilearn, 2022)

2.3.2 API Development:

Software can communicate with one another using an API(Application Programming
Interface). A crucial element of software development is API Integration. They are the cause
of the most recent clickbait being shared on social media or the instant opening of Google
Maps after a search. (Brewster, n.d.). For anything and everything you can think of, there is
an API. To make things simple, a mobile application that connects to the internet, sends
data to the server and the server responds with the information requested.

2.3.3 Back-End Development:

The backend is the server side which is what goes on in the background of the application.

Backend developers are mostly concerned with how a website functions. The backend is

5 | P a g e

5

required for the frontend to function. The frontend talks to the backend to retrieve the

information shown to the user. It consists of an application, API, server, and a database. The

application content is kept in databases, which are structured in a way that makes it simple

to access, manage, modify, and save data.

Backend Languages consist of Python, JavaScript, PHP, SQL, Ruby, Java and many more.

2.3.4 Front-End Development

Front-end is based on what the user see’s and how they interact with the finished product.

The front-end consists of everything from a simple heading, paragraph, button, link and

even a logo. An individual who specialises in designing and developing the user interface

(UI) and user experience (UX) of a website, web application is referred to as a front-end

developer. Front end developers are also responsible for ensuring that the website appears

well on all platforms. For example, mobile devices, tablets, and computer displays.

Front-end development consists of HTML, CSS, and JavaScript. For a more sophisticated and
responsive design, there are many alternative CSS Frameworks and libraries available.
Utilising these frameworks enables quicker and more convenient web development because
they come with ready-to-use stylesheets. These libraries include, among others, Tailwind
CSS, Bulma, and Bootstrap. (Top 5 CSS Frameworks for Developers and Designers |
BrowserStack, 2022)

 JavaScript frameworks are quite crucial to programming since they provide your code
structure. These frameworks serve as models and the basis for software programmes. It
gathers and distributes shared resources for developers to utilise, including libraries,
reference materials, photos, and more. (Toal, 2014). JavaScript libraries and frameworks
Node. Js, Angular Js, React Js.

2.4 Software Methodologies (SDM’s)
Each application developed requires meticulous project management. There is a vast

majority of steps to approach in software development methodology. Planning, structure,

and performance monitoring fall under this category. The goal is to simplify the process

making SDM extremely crucial in this situation. SDM’s concentrate more on the internal

operations rather than the technical features. Numerous businesses now use SDM to

enhance the quality of their product which obtains the greatest outcomes.

Frequently used methods of software development include Agile, DevOps, Waterfall and

Rapid (RAD). Each SDM has unique characteristics, it is up to developers and their team to

determine the most appropriate approach for their project.

2.4.1 Agile Development Methodology

When adding new functionality, teams use the agile development approach to reduce risk

which include glitches, funding issues and changing requirements. Agile methodologies

include the Crystal method, Scrum, Dynamics System Development among several others. In

recent years, agile methodology has become one of the most popular software

6 | P a g e

6

development approaches. Agile places a high focus on communication, especially amongst

engineers, clients, and users.

Scrum

One of the numerous varieties of agile technique is scrum, which is recognised for
segmenting projects into sizeable units called "sprints." Each phase is comprised of two to
four-week sprints, with the purpose of completing the most critical elements first and
producing a deliverable product. Following sprints, further features are added to the
product and are changed depending on the feedback from, in this case, supervisors and
users. (What Is Agile Scrum Methodology? - businessnewsdaily.com, 2023). There are
distinct roles within the scrum methodology which consist of Product Owner, Scrum expert
and a Scrum Team.

 Positives

The most significant advantage of agile scrum approach is its adaptability. The developer

may easily and swiftly modify product goals throughout next sprints to deliver more

beneficial iterations if there are any issues or adjustments. As the Scrum approach typically

requires less record-keeping and control, it can be cost-effective for an organisation.

Everyone should take complete ownership of their job to foster a productive environment

that produces products of the highest calibre.

To avoid working in isolation, integrated groups of designers, developers, testers, and
business and functional specialists can collaborate as a team when using the scrum
development technique. (7 Key Benefits of Using the Agile Scrum Methodology | Jile, 2023)

 Negatives

Agile development methodologies focus on real-time communication, thus inexperienced
users frequently lack the necessary background information to get started. (Team et al.,
2017). They necessitate a considerable time commitment from users and are labour
demanding since developers must finalise every functionality for user approval throughout
each iteration.

Teams of at least three members, but no more than ten, often perform well when using the

Scum approach. Even while this might encourage cooperation and teamwork, some

businesses can find it challenging to organise their employees into teams. (Indeed, Editorial

Team, June 25. 2022). When big teams are brought in, they frequently try to work in a more

regimented way, which can either slow down the workflow or even block it completely.

2.4.2 Waterfall

The waterfall method is frequently regarded as the oldest approach to software
development. The waterfall model is linear approach that makes use of a set of phases that
do not overlap. Each phase emphasis certain objectives and must be fully completed before
the next phase can begin. Developers will not be able to go to previous phases once

7 | P a g e

7

finished, thus the name waterfall. These stages are as follows: Requirements, Design,
Implementation, Verification and Maintenance. (Team et al., 2017)

 Positives:

The waterfall approach adheres to a certain format. It is a continuous framework with many

stages, each containing its own collection of objectives and deliverables. Knowledge may be

transferred amongst team members effortlessly since the project is easily transitioned from

a particular stage to another.

For each stage of the project development process, the Waterfall methodology has clearly

defined objectives and deliverables. Since each milestone must be met before moving on to

the next, this kind of application, is simple to manage.

 Negatives:

Since the Waterfall model involves a linear ordered design procedure, each phase must be

finished before proceeding on to the next. The entire process is extremely established and

planned, leaving little room for flexibility.

When creating an application, the Waterfall project management methodology fails to
provide customer feedback top priority. This method has the drawback that the demands
are subject to change, particularly when people begin working with your application and
provide insightful feedback. (Singh, 2022)

Testing is not permitted under the Waterfall technique until the entire system testing phase,
which is the last stage of the development process. (Singh, 2022)

2.5 Software Development Approach
There are currently three main types of smartphone apps available to us right now: Native,

Hybrid and Web. One must decide which of these three main approaches is ideal for them

when developing an app for a tablet or smartphone and how to execute it. As there are so

many factors to consider, selecting one of these three options can be challenging and

exhausting. Therefore, a suitable starting point for choosing between Native, Hybrid and

Web is what features and functionality will your app have? What operating system does the

target audience use? What industry does your proposal cover? What is the app’s

development budget? As each feature and functionality will behave differently whether on

Android, IOS etc.

2.5.1 Native Development

Native Apps are specifically created for an IOS or Android platform. The platform that is

chosen determines the set of tools and languages available for future app development.

Swift and Objective -C are programming languages used to create native iOS apps while

Kotlin and Java are used to create native Android apps. (What Software Development

Approach to Pick: Native, Hybrid or Cross-Platform? - Touchlane, n.d.). Native Mobile App

development is desirable when you want to provide the best user experience possible in

8 | P a g e

8

terms of how the product appears and feels. They can use fundamental smartphone

hardware components like GPS, camera, microphone, proximity sensors and so forth.

(Singh, 2022)

There are a high range of native apps that we use daily without even realising. Some being

Google Maps, Spotify, Twitter, Pokémon Go, Pinterest and much more. (Singh, 2022)

 Positives

There are several significant benefits to developing native apps. The fact that native apps

function properly even when there is no internet connectivity is one of the main

advantages. It is exceedingly rare you can use an app that functions offline, this is highly

beneficial for any user, we cannot always rely on having a strong Internet connection or

even any for that matter.

Another strong positive is the development speed. Native mobile apps do not utilize
complex code like hybrid and cross-platform, which allows them to be significantly quicker.
According to (What Software Development Approach to Pick: Native, Hybrid or Cross-
Platform? - Touchlane, n.d.) native apps are a 25-30% faster option, in the grand scheme of
things that is an extreme difference. A vast number of the app's components load quickly
because they preload before they appear. As we use mobile apps for our everyday lives, we
expect them to be rapid and ready when needed.

Because native apps are built for a specific platform, they provide a higher-quality user

experience.

Native apps have a higher level of security than other methods because they use the
operating systems built-in security features. (What Software Development Approach to Pick:
Native, Hybrid or Cross-Platform? - Touchlane, n.d.)

 Negatives

In comparison to the number of benefits native apps provide, there are not as many

drawbacks as possible.

As I have already mentioned, native apps are exclusively made for one particular operating
system; so, if you need to develop for both iOS and Android, you will have to do so
individually. As you can expect, this would necessitate a considerable amount of money, and
workforce. (Singh, 2023)

2.5.2 Hybrid Development

According to Net Solutions, (Singh, 2023) hybrid development is defined as “ the
combination of native and web solutions where developers need to embed the code written
with the languages such as CSS, HTML, and JavaScript into a native app with the help of
plugins including Ionics’s Capacitor, Apache Cordova, and so on which enables to get the
access of native functionalities.”

9 | P a g e

9

Uber is used to illustrate this definition. Uber is composed of a single codebase. Therefore,

users can download the exact same Uber software from their individual app store regardless

of the operating system on their phone.

Programming languages like HTML5, CSS, JavaScript are used to create hybrid apps.

Most consumers are unaware that their most used apps could potentially be hybrid. Here

are a few examples; Instagram, Discord, Evernote, Gmail, and Microsoft Teams. These are

only a few of the countless programs that have been created as hybrid applications.

 Positives:

As mentioned previously native apps are solely based on a specific operating system unlike

Hybrid apps which are composed of a single codebase. This time required for development

will be lowered in half by eliminating the need to create two apps. Hybrid applications are

the most efficient way to create a product and is rapid time to market.

A hybrid application is less expensive to develop because fewer developers are considered

necessary.

Hybrid applications are easier to maintain because developers can update the code once

and have It pushed to bother operating systems.

 Negatives:

For access to the app’s features, user’s must be connected to the internet, with hybrid there

is no offline support.

A hybrid app must have approval for more than one platform lengthening the testing

process.

 There are several operating system-specific features that may not run properly since hybrid

apps only use one piece of code. For instance, it is possible that some iOS capabilities will

not work perfectly with Android, which will make things difficult for the user. (Singh, 2023)

Figure 1 - Native, Web & Hybrid Applications

10 | P a g e

10

2.6 Application Framework
A software library known as an application framework offers a core foundation to assist in

the creation of applications for a particular environment. An application framework serves

as the basic structure upon which an application is built. Since numerous companies now

depend on having a mobile involvement to survive, the demand for these frameworks has

increased significantly over the last several decades.

2.6.1 React Native

React.js, which is used to create web applications, is the foundation of React Native, a

framework created exclusively for the creation of native mobile software. React was first

made available to the public in 2013 and Facebook released React Native in 2015. You can

build genuinely native apps using React Native while maintaining the quality of the user

experience.

It is unaware of the total number of react engineers in the globe. But it is known that

around 1.6 million individuals have the react devTools installed as a Google Chrome

extension.

Thousands of applications employ React Native, but chances are you have previously used it

in one of the many; Facebook, Outlook, WordPress and also Skype.

React Native allows you to expand and enhance the code base of an existing native

application. This calls for the use of a native development IDE, in this context Android

Studio.

In contrast to React, React Native features built-in components that render similarly rather

than using the existing standard HTML element tags. The “View” component and the <div>

tag both simply serve as containers for their content, which makes them quite comparable.

Additionally, React Native uses a class named “Stylesheet” rather than separating CSS files

to style elements.

When a user launches a programme, the device launches a total of three primary threads

and, if necessary, further background threads.

UI Thread

The main native thread on which the programme will execute is called the Main Thread. It
oversees interaction between users and displaying UI on a device's screen. Every natively
created programme has an identical thread operating. (Kosmal, 2022)

Shadow Thread

This is the background thread. This thread will be launched concurrently with the JavaScript

thread. Its goal is to calculate the locations of the views and build a layout structure written
in the JS thread. React Native takes advantage of the Yoga layout engine, which translates
flexbox-based structure into an architecture of layout that a native host can comprehend.
(Kosmal, 2022)

11 | P a g e

11

JS Thread

The JavaScript thread is responsible for executing the React (JavaScript code) code.

 Positives

The most significant advantage of React Native is the fact that programmers do not need to

write distinct code for each platform (Android and iOS).

A web development technique called JavaScript is the foundation of React Native. React
Native allows JavaScript programmers to construct mobile applications. By using this,
developers may design apps faster and without having to master difficult languages like Java
or Objective-C. (7 Advantages of Using React Native for Mobile App Development, n.d.)

React Native components correspond exactly to native development features. The app's

native-like appearance is accomplished by merging JavaScript and native user interface

elements into one.

The instantaneous reloading method in React Native enables developers to observe and

perform modifications in real time. If you make any adjustments to the code, the app will

automatically reload. You may also refresh sections of the update to save time while

compiling.

 Negatives

Because some unique modules are not present in the framework, developers may need to

spend more time building and creating their very own additional modules from the ground

up.

When faced with challenging UI design considerations, intricate animations, and intensive

interactions, the React Native's responsiveness is pitiful.

Utilising a newer version of React Native is advised because each upgrade offers additional
improvements. Nevertheless, you are unable to depend solely on the implementation of
automatic updates; you might experience some unexpected problems as you gradually
adjust to the latest version. (React Native Pros and Cons [2023 Update], n.d.)

2.6.2 Flutter

Altextsoft define flutter as an “open-source technology for creating mobile, desktop, and
web apps with a single codebase. Unlike other popular solutions, Flutter is not a framework
or library; it is a complete SDK” (The Good and the Bad of Flutter App Development, 2022)

Flutter was released in 2016 by Google. All apps created using Flutter are written in Dart, a
programming language supported by Google. Dart can convert into native code along with
JavaScript. Flutter did not require much time to become wildly successful after it is alpha
debut in May 2017. The official Stable release in December 2018. (Wu, 2018)

12 | P a g e

12

Flutter contains a rendering engine, pre-made widgets, testing and integration API’s etc as it
is an entire SDK. Widgets are a whole other important aspect of Flutter. There is a vast
variety of these pre-made widgets available, you may also modify and build your own. (The
Good and the Bad of Flutter App Development, 2022)

 Positives

The framework provides a selection of unique and attractive widgets. Additionally, they

upgrade the libraries regularly with different interface elements. Because of the Flutter

functionality, you just need one Flutter development group to create and maintain your

apps.

The online community for developing apps with Flutter has been expanding steadily.
Professionals and novices alike are eager to contribute their skills and expertise because of
the welcoming development community. (Vietnam, 2020)

 Negatives

Since they make certain functionalities available to developers, third-party libraries and

packages have a considerable influence on software development. Nonetheless, finding

such free packages and libraries is difficult because Flutter is a new platform for creating

mobile apps.

The enormous file size of Flutter apps is a major flaw that may not be overlooked.

Dart is the programming language used with Flutter. Despite it being a trustworthy
programme due to it being rapid, it is still unable to maintain a competitive edge among the
other programming languages. (Montaño, 2023)

2.7 Conclusion
The developer discusses two software methodologies, Agile and Waterfall. Although the

waterfall methodology brings many positives to project management, it leaves truly little

room for flexibility as each phase must be completed before moving onto the next. It also

fails to provide feedback from the customers which gives no room for change although the

application may not be up to the customers standards.

For these reasons, the developer chose to implement the Agile, Scrum methodology for the

development of the mobile application. The main factors that stood out to the developer

where how easily and swiftly the products goals could be modified. This is extremely

beneficial as it allows less room for issues or later adjustments. Each phase is divided into 2

– 4-week sprints, allowing the developer to keep evaluating their workflow and

communication with their supervisor throughout the entire process.

Throughout this review, the developer examined two different software development

approaches, Native and Hybrid. There are a vast number of benefits to developing native

apps. One major key feature that stood out significantly well, native apps function offline

without needing to connect to the Internet. This is highly beneficial to user’s all around the

13 | P a g e

13

world. Native applications are extremely fast and preload before the information is

displayed. Rapid apps on the go, is an immensely powerful tool to have.

React Native is a freely accessible framework with a quick setup that plenty of web

developers find extremely useful. It is a powerful framework that has amazing performance

results on iOS and Android. Giving the rising need of mobile apps it is crucial to choose the

right application framework for your design. Although I do not feel there is a particularly

right or wrong answer here, I feel like React Native has stolen the show over Flutter. I do

believe it depends on the mobile app you are building and the circumstances, there is a lot

to take into consideration as I have already mentioned. React Native enables developers to

be more efficient by eliminating the need to create duplicate code for several platforms.

Overall, React Native is a win, win situation for app development since it saves money, time,

and effort. Overall, it results in a phenomenally successful mobile app development which is

the chosen framework for the developer's application.

3 Requirements

3.1 Introduction
The goal of the requirements phase is to provide developers with a chance to determine

what the program should be able to achieve. As opposed to the developer defining what Is

necessary, it is crucial to learn what the users would like the program to do.

To weigh the benefits and drawbacks of pre-purchase car inspection applications, the

developer examined related programs. This enables the user to understand what does and

does not function.

The developer conducted interviews to determine the key features for the user and the

mechanics of the app. This will be extremely beneficial as it may highlight numerous

difficulties that emerge during the several interviews.

The developer designed several personas which helped assist in realizing that various people

have unique needs and expectations, as well as assist in identifying the users you are

defining for. It also helped support the developer in achieving the objective of potentially

giving the target audience a positive user experience.

The project’s needs, including their functionality and performance levels, will also be

highlighted, and covered in the requirements chapter. The developer will conduct a

feasibility analysis to assess the projects viability, outlining the suggested application’s

advantages and drawbacks.

3.2 Requirements gathering

3.2.1 Similar applications

14 | P a g e

14

3.2.1.1 Car Experts

Car Experts is a website that allows users to schedule appointments for pre-purchase

vehicle checks. Car Experts Ireland is a company that is not affiliated with automakers. Their

major objective is to make sure that the vehicle you buy next is safe. A snippet of the Car

Experts webpage is featured below in Figure 2.

Figure 2 - Car Experts Website

 Advantages:

Car Experts offers mobile capability which is extremely beneficial for the user. It is an overly

simplistic webpage and straight to the point.

 Disadvantages:

Car Experts although offers a mobile version does not offer a mobile application. It is

extremely limited as to what you can do on their site, being a single webpage. The only

choice is to fill out a form to seek a call-back, and that is to obtain a quotation. You are

unable to request an online payment or schedule an appointment with available dates

shown. Going back and forth can generate a lot of unnecessary effort for the user.

3.2.1.2 Car Inspections Ireland

Car Inspections Ireland founder and lead engineer Noel Maher, who began working in the

auto and insurance sectors in the 1980’s. To provide knowledge for making buying decisions

and to serve as a protection and guide for customers in the auto industry, Noel launched Car

Inspections Ireland.

15 | P a g e

15

Figure 3 - Car Inspection Ireland Website

 Advantages:

Offers post-repair Inspections following a crash with various levels of payment. Car

Inspections Ireland has an online appointment booking with the option to pay for the

service afterwards using a reference number. Their website is highly informative in terms of

what they provide. Blog entries with the latest information for that area are also published

on their website.

 Disadvantages:

The website feels extremely chaotic and is a little overloaded making it hard to concentrate

on the key points. Despite being quite informational, the websites layout makes it difficult

to navigate.

3.2.2 Interviews

3.2.2.1 Interview with a technician from the company.

Conduct interviews with 3 or 4 users to find out what the key features for them for the app

are. There may be various issues that arise in multiple interviews. These can be grouped

together into several themes.

3.3 Requirements modelling
3.3.1 Personas

Personas are imaginary characters that aid the developer in understanding the

requirements of the user. They also assist in determining who the relevant users are. To

develop outstanding products, developers must have a thorough grasp of their target

market. One of their most crucial questions they ask is “Who are we developing for?”

16 | P a g e

16

Typically, the following details should be included when constructing a user person.

 Persona name

 Photo

 Demographics

 Goals & Needs

 Frustrations

 Quote or Slogan

3.3.1.1 Persona 1 – Sarah Browne

Student and part-time waitress Sarah Browne is searching for a new, dependable vehicle

that is also environmentally friendly. She is in desperate need of assistance since she

understands little about vehicles and does not want to waste money on a car that is

untrustworthy. She finds the process of car shopping to be quite intimidating.

Figure 4 - Persona Sarah Browne

3.3.1.2 Persona 2 – James O’ Leary

Banker James O' Leary is now retired and lives at home with his wife. He is looking for a

conventional, vintage car. He is not very technically gifted and would like something a little

bit more straightforward. He has been taken advantage of throughout the years and has

purchased expensive vehicles without researching their histories. He must be assured

before purchasing, especially because he is seeking for something so vintage.

17 | P a g e

17

Figure 5 - Persona James O'Leary

3.3.1.3 Persona 3 – Danny Thomas

Danny Thomas, a licensed mechanic with expertise in Hyundai who is currently employed by

Intel as an engineer, wants to take the next step and launch his own company to help

provide for his family. Danny requires a simple method for communicating with clients and

indicating his availability. He wants to help clients buy cars with confidence. When buying

vehicles, he finds it frustrating when sellers conceal prior damage with shoddy repairs and

absence of service records, to name just a few of the many issues.

Figure 6 - Persona Danny Thomas

18 | P a g e

18

3.3.2 Functional requirements

The intended operations of a program or system are referred to as functional requirements.

Functional requirements often explain how a system will behave under circumstances.

3.3.2.1 User:

ID REQUIREMENTS

1.0 Register

1.1 Login

2.0 Choose A Specific Mechanic

2.1 Choose A Plan

2.2 Book An Appointment

2.3 Pay for the service they chose

3.0 Chat with the mechanic

4.0 See upcoming appointments

5.0 See past & present reports

3.3.2.2 Mechanic

ID REQUIREMENTS

1.0 Register

1.1 Login

2.0 See upcoming appointments

3.0 Chat with the user

4.0 Confirm Booking

4.1 Upload documents for a specific user

4.2 Upload images for specific user

3.3.3 Non-functional requirements

19 | P a g e

19

Non-functional requirements are a criteria that, if not satisfied, do not prevent the

application from functioning, but do indicate that the application is not performing as well

as it should. They are often concentrating on concerns such as:

 Usability

 Performance

 Security

 Availability

ID REQUIREMENTS RESPONSE

1.0 Availability
The application should be

compatible with both Android
& iOS

2.0 Security

The application should only
show user-generated material
that has been contributed by

that user and any material
published by the mechanic, and
only registered users should be

allowed to log in.

3.0 Performance

The programme must function
well, with loading times of no

more than two seconds for
each screen.

4.0 Usability

The application should be easy
to use for the customer and

mechanic. The essential actions
should be completed quickly

for the users.

3.3.4 Use Case Diagrams

A use case diagram's objective is to show the many ways in which a user may engage with a

system. An effective diagram should list the actions and variations used to accomplish the

objective. To help demonstrate and describe the applications complete systems needs and

the important components, the developer created two use case diagrams using draw.io. The

two illustrations show how a user and a mechanic interact with the suggested application.

20 | P a g e

20

3.3.4.1 User:

This use case diagram highlights the interactions between the user and the application. The

user must register if they have not already before they may log in. If you are already logged

in, you can proceed directly to this section. The user, once logged in can Book an

appointment, chat with the mechanic, view past and present reports, view what services the

application provides and view information about each individual mechanic. The diagram

also shows the process in booking an appointment.

Figure 7 - User use case diagram

3.3.4.2 Mechanic

The interactions between the mechanic and the application are depicted in the use case

diagram as shown below in Figure 8. Once the mechanic is logged in, they can confirm

incoming bookings from the user. They can chat with the user. Once an inspection is

complete the mechanic will upload the final report and can also upload images.

Figure 8 - Mechanic use case diagram

21 | P a g e

21

3.4 Feasibility
The technologies that will be utilized to create the application are covered in this section. It

then explains if there are any issues in terms of the technical feasibility of the project, for

example, if there are two diverse types of software which may have compatibility issues.

The developer has some prior experiences with Express.js and Node.js which would be

helpful for the application's development.

The developer previously used React.js and has a good knowledge of this technology from a

previous project. Nevertheless, developing a final-year application with limited experience

using React Native might be difficult. A solution to this problem is to study the technologies

being utilized by following free online tutorials and consulting the online documentation on

the React Native website.

The developer will be using visual studio code, which is a free source code editor made by

Microsoft.

3.5 Conclusion
In this chapter, the developer has discussed the suggested application. The application is a

pre-purchase car inspection mobile app. This mechanic has the equipment and expertise to

inspect and perform diagnostics on the next vehicle the user is about to purchase. Allowing

the user to have peace of mind when buying a used car. The user and mechanic can chat to

each other through an instant messenger within the app. The user can book an

appointment, pay for the service they would like, see past and present reports from the

mechanics and chose which mechanic they would like for the job.

Three different applications where analysed that had numerous similarities to the suggested

application. The first application the developer investigated was Car Experts, this is an overly

simplistic webpage which lacks major functionality. The form where you may request an

online quotation and wait for a response is the only key component that the user can

interact with. For the user who is waiting for a response, this slows down the entire

procedure. The website itself has a fantastic aesthetic appeal and a smooth flow and gets

right to the point. Another comparable program that the developer examined is called Car

Inspections Ireland. Compared to the previous example, it has a lot more functionality. It

also offers users the opportunity to have post-repair inspections following a crash with

various levels of payments. The website's developer noticed that it is excessively cluttered

and challenging to read. Although the two samples are mobile friendly, the developer was

unable to locate a mobile app that was comparable to the proposed application.

The developer designed three personas, were created by the developer, and were based on

a mechanic, an elderly user, and a youthful user. One is a college student, while the other is

retired. These were established to impact design concepts and aid in decision making. Two

use case diagrams were designed to see the users and mechanics interactions with the

application. This aids in determining the systems major characteristics.

22 | P a g e

22

4 Design

4.1 Introduction
This chapter will go through the design of the application. In the life cycle of developing

systems, the design phase is crucial. The goal of the project's design phase is to provide

developers the opportunity to create an application design that satisfies the requirements

outlined in the Requirements chapter.

Typically, the design phase is often broken down into two categories

1. Program design

2. User Interface design.

Firstly, the developer will discuss the technologies been chosen and why they were suitable

for the development of this application.

The developer will go through the application's user interface design in this chapter. The

developer will discuss two user flow charts that will show the users and mechanics

processes that they will go through while using the program. The developer will outline the

style system utilised to construct the application. Wireframes that will be designed using

Figma, will be exhibited in this section.

For the database design the developer created an entity relationship diagram this is

essential for modelling the data stored in the database. This provides a visual starting point

for database architecture and is also used to help identify the needs of the applications

information systems.

4.2 Program Design

4.2.1 Technologies

The application will be created by the developer utilizing the MERN stack development

architecture which is a more modern stack.

 MongoDB (Database)

 Express (webserver framework)

 React Native (front-end library)

 Node (server-side environment)

These technologies were chosen because the developer has some understanding of MERN

stack being used in a previous project.

Node.js is an open-source and cross-platform JavaScript runtime environment. This is a

platform for developing web applications, application servers. It is often used to develop

23 | P a g e

23

API’s. In this case the developer will be creating an API for the backend using Node.js. Node

js is not limited to web applications but is also for mobile applications which is a crucial part

of the development of this application.

Expo is a framework for React Native which provides you with tools that help you develop

code and deploy code. Allows the developer to ignore Java and Swift. Everything can be

written in plain JavaScript and will look fantastic on both iOS and Android. The developer

does not need to be concerned about any native components, such as Android or iOS code.

Stripe is a payment processing platform which have APIs to accept credit cards and

payments. This is extremely beneficial to the developer as the application has a payment

system. The creation of native apps for the Apple and Android device platforms is facilitated

by mobile device helper libraries, commonly referred to as mobile device SDKs. The

developer may include Stripe into React Native-built iOS and Android applications with the

aid of the React Native SDK.

Figure 9 - MERN Stack Technologies

4.2.2 Design Patterns

The application consists of a MVC, Model View Controller. The core concept of MVC is that

each component of your code serves a distinct purpose. The app's data is stored in a portion

of the developers code, which also contributes to its attractive appearance alongside a

portion of its functionality. As indicated within the name, MVC had three core components,

Mode, View, and Controller.

All the user's data-related logic is represented by the Model component. It processes
requests from the controller and is independent of the view component. The model
oversees dealing with data, regardless of if it comes from a database, an API, or a JSON
object.

24 | P a g e

24

The view is the user-interface, typically an interactive graphic user interface (GUI). Model
information, interactive interfaces, and data are displayed in View. For instance, the client
view will have access to all UI elements, including buttons, dropdowns, and text fields.

Data collection, modification, and delivery to the user are all duties of the controller. The
controller connects the view and model. The Controller serves as the primary "brain" of this
system and decides what it will perform next after getting "requests" from the View. (The
Model View Controller Pattern – MVC Architecture and Frameworks Explained, 2021).

Figure 10 - Model View Controller

4.2.3 Application architecture

25 | P a g e

25

Figure 11 - Application Architecture

Web architecture consist of a client, a sever with the application logic and a database for the

storage and processing. The key objective is to provide a clear logic for the application and

the relationships between the various technologies.

User views data from the front end, frontend sends a request from the user to the backend

and the backend sends back a response to the frontend and is displayed to the user.

The server-side language varies, the developer will be using JavaScript (Node.js). While the

database holds the data, the application logic directs the program to do the necessary tasks

and responds to user requests.

Stripe notifies the front end that the transaction was successful, and the front end notifies

the back end that the transaction was accepted.

4.2.4 Database design

26 | P a g e

26

Figure 12 - ERD

4.3 User interface design
This section will describe how the interface is designed. It will include the user interface

design elements, wireframes, user flow diagrams and style guides.

4.3.1 Wireframe

Wireframing is essential in UI design. A wireframe shows the content and functionality for

the layout, information architecture, user flow and intended behaviours. Wireframing is a

critical part of the interaction design process as the developer can use wireframes to test if

their conceptual ideas transition effectively in practice.

Each wireframe designed by the developer was created using Figma, which is a web

application tool for interface design. The developer chose a grid system to align page

elements based on the sequenced columns. To arrange text, graphics, and functionalities

consistently across the design, the developer adopted a column-based layout. The grid

system is illustrated below in Figure 13 as an example. Within the wireframes shown below

the developer has include many different elements which include search fields, headers,

buttons, some text etc. The wireframes are created in a greyscale, using lighter shades of

grey to represent lighter colours and darker shades to represent darker colours.

27 | P a g e

27

The wireframes below show three separate pages, Figure 14 - Messenger, shows the user's

active chat rooms in a list format. A search box allows users to look for a specific chat they

require from the past. The user has the option to start a new chat message and return to

the homepage via the bottom nav bar.

Figure 13 -login, homepage, appointment screen

28 | P a g e

28

Figure 14 – Reports, Messenger, Chat Screen

4.3.2 User Flow Diagram

A users flow chart depicts the tasks involved in the process as well as the users' flow. A user

flow diagram is usually created after you have thought about the customers experience and

needs. It is crucial to map out and visualise the experience you want users to have, to

completely comprehend it. Without a diagram, the developer would be forced to maintain

an internal mental representation of the workflow, which might result in poor design and

technological choices.

The diagram below in Figure 15 shows how the user flows through the application. If the

user is already signed up, they can input their email and password otherwise they must set

up an account and fill in their details before proceeding. Once logged in, the user is sent to

the homepage, where they may explore a variety of features.

29 | P a g e

29

Figure 15 - User flow diagram

Figure 16 - Mechanic flow diagram

4.3.3 Style guide

Style guides show the colours, typography, and layout of the application. There is a general
theme that is used throughout all the pages in the app. The developer chose an analogous
colour scheme to create a sense of harmony for the user. The colours are close to each
other on the colour wheel so are uniform and calm. This colour scheme can be low contrast
so white is also used as an accent to create contrast and text is kept to black or white
throughout.

30 | P a g e

30

 The Hex colour #0F0445 (Federal Blue) is a very deep blue in RGB consisting of 27% blue.
This is the dominant colour chosen where gradients are applied and throughout the
application. Navy blue is a cool colour seen as authoritative and conveying a sense of trust
which is why it is often used in uniforms. It has also been used in marketing for its depth and
to show professionalism and sophistication. It is a reliable and stable colour which is non
gender specific.

 Purple is used as a supporting colour. In colour psychology purple denotes luxury and
mysticism adding an err of interest to the app. It is a powerful and energetic colour. (Braam,
2022). Purple was chosen by the creator because colour has a relaxing impact on the mind
and body. It is frequently viewed as an uplifting and inspirational colour.

 Figure 17- Colour Palette 1.0

 Figure 18 - Colour Palette 2.0

When developing any application, whether mobile or web, a solid layout in UI Design is
essential. The developer built a visual system that looked coherent and helped the user
navigate by using components of consistency with established relationships between them.

The developer applied the flexbox layout module to ensure stability throughout the
application. Flexbox utislises columns and rows along a horizontal and perpendicular axies.
It is an extremely useful tool that guarantees exact alignment. There are two axes of
flexbox, the main axes and the cross axes. According to Basic Concepts of Flexbox the cross
axis is perpendicular to the main axis. (Basic Concepts of Flexbox - CSS: Cascading Style

31 | P a g e

31

Sheets | MDN, n.d.) To accomplish the desired layout, the developer employed a variety of
distinct flexbox properties. These properties include, flex, flex-direction, justify-content and
align-items.

Figure 19 - Welcome Screen, Get Started, Login Screen UI Design

Figure 20 - Register Account, Messenger, Chat Screen UI Design

32 | P a g e

32

 Figure 21 - Home Screen, Book Appointment Screen

33 | P a g e

33

Figure 22 and 23, show the logo designed by the developer. Sometimes, a company's logo is

the most recognisable aspect of a project or business. A brand's logo is its emblem, and

although it does not occupy very much room, it has a significant impact. The designer chose

to design a remarkably simple but effect logo, keeping with the colour scheme can be eye-

catching and memorable.

 Figure 22 - Marian Blue Logo

 Figure 23 - Medium Slate Blue Logo

34 | P a g e

34

4.4 Conclusion
In this chapter the developer discussed the technologies and the key reason they those

them and the benefits of using the MERN Stack model. One of the main reasons the user

chose these technologies is to learn more about developing mobile applications.

The developer also examined the structure of MERN Stack and the structure of Expo and

React Native.

Another section the developer discussed in this chapter was the user interface design. The

developer went into detail with several high-fidelity wireframes which were designed using

Figma. The wireframes are made up of different components, headers, text, calendar,

buttons etc. The wireframes aided the developer in thinking about and communicating the

structure of the application being constructed. Nailing a strong interface structure is the

most crucial step in application design. By creating these wireframes in this phase, time and

painful adjustments will be avoided later.

By this stage, the user's goals and where they are coming from have been explored in the

requirements section, and the developer is focused on creating a good user flow

diagram. The user flow diagrams gave the developer an overview of the process of the

application. It interprets how the user and mechanic will interact with the application.

The style guide shows the design system for the application. The style guides show the

colours, typography, and the layout of the application. The chapter explain why these where

chosen and how they suit the application. There is a general theme that is used throughout

all the pages of the application. The developer chose to use repetition within the design,

reusing colours, patterns, fonts, and images. Repetition brings rhythm and unity to the

application.

35 | P a g e

35

5 Implementation

5.1 Introduction
In this chapter the developer will describe the implementation for the application. The

developer will also discuss the development environment being used for this project and

explain the various stages of each sprint, the goal, the issues, and then knowledge gained.

 The application has been developed using the following technologies:

MERN stack – Mongo Db, ExpressJs, React Native and NodeJS. Expo is a free and open-

source framework for developing universal native apps for Android, iOS, and the web.

Another technology being utilised is Stripe, an online payment infrastructure. The

technologies have been explored in greater depth in the preceding design chapter.

The developer has been tasked with creating and designing a mobile application for an up-

and-coming business, Pre-Purchase Car Inspection (PPCI). The technicians have the

equipment and expertise to inspect and perform diagnostics on the next vehicle a customer

is about to purchase. Each inspection examines over 100 parts from the engine, gearbox and

chassis to smaller items such as light bulbs etc. The technicians will take care of examining

and inspecting the vehicle for you, giving you peace of mind while purchasing a vehicle.

 A user can book an appointment with one of the company’s highly qualified technicians,

interact with them through instant messaging, view present and previous reports, and

choose what service they would like & pay for the service through the application.

A technician can interact with a user through instant messaging, confirm bookings, upload

images and reports for specific clients. Additionally, they can view upcoming appointments.

5.2 Scrum Methodology

According to Digite, Scrum is an agile development methodology which is used in the
development of software. (What Is Scrum Methodology? & Scrum Project Management,
2022).

When adding new functionality, teams use the agile development approach to reduce risk
which include glitches, funding issues and changing requirements. Agile methodologies
include the Crystal method, Scrum, Dynamics System Development among several others.

 Scrum is executed in temporary blocks that are short and periodic, called Sprints. These

usually range from two to four weeks. Each sprint is an entity, producing a full outcome.

36 | P a g e

36

Figure 24 - Scrum Methodology Process

The implementation phase for the development of this application consists of 9 sprints

overall, each sprint being 2 weeks long.

The requirements for the application were listed in a product backlog. Each item on the

product backlog was broken down into a series of tasks which formed a sprint.

The Roles

5.3 Development environment
An integrated development environment (IDE) is a piece of software that aids in the

productive creation of software code by programmers. By integrating functions like

software editing, building, testing, and packaging in a user-friendly program, it improves

developer productivity.

The developer for this project will be using Visual Studio Code which is a free and open-

source IDE. Vs code has features like syntax highlighting, bracket matching, auto-

indentation, box selection, snippets etc. Debugging is a crucial part of the programming

process. Vs Code provides interactive debugging, which allows you to move through the

source code, examine each variable, and run commands in the console. You may also add

third-party extensions using Vs Code. This enables you to personalize each aspect and make

it unique.

Vs Code also has Git commands built in. A Git Repository window, which displays all the

information in your repository, including local and remote branches and commit history, is

also included. Deploying with confidence and ease.

The frontend application's developer set up a GitHub repository. The project started with a

GitHub repository, and each time a developer made modifications, those changes were

committed and published to the repository.

37 | P a g e

37

5.4 Backend & Data Management

5.4.1.1 Creating a Database

The database is on MongoDb servers so it will be hosted. According to MongoDb is an open-
source document database used to build available and scalable internet applications. (Why
Use MongoDB and When to Use It?, n.d.). MongoDb allowed the developer to immediately
start building the application without spending time configuring a database.

Firstly, In the projects tab, the developer created a new project called
MajorProject_backend. Once the developer created the project, they could then build a
database using the free shared version as seen below in Figure 25.

Figure 25 - Creating a project on MongoDb & building a database

The developer went through each step to create a free cluster. The developer created a

username and password that gave permissions to read and write any data for the project.

The developer added the current IP Address and 0.0.0.0/0 which allows all IP Addresses to

access the project’s clusters.

Figure 26 - Creating a cluster & adding authentication

Once the cluster was created, the developer was able to choose an option in collections to

add their own data. As seen below in Figure 27, the developer filled in the appropriate input

38 | P a g e

38

fields. The collection name is the actual table within the database, so for example the

database needed a reports table to store all the data regarding reports.

Figure 27 - Creating a database & adding a collection

In the database tab, there is a connect button which gave the developer options to connect

to MongoDb. The developer chose the option ‘Connect to your application’ which gives a

link that allowed the developer to connect to the database. Figure 28 below illustrates the

link.

Figure 28 - Link connecting to the database

5.4.1.2 Backend Setup

The developer created a folder that contains the backend for the application. The developer

ran the following node package manager commands. In Figure 29 below displays the

commands the developer used to create the backend application. Once the folder was

created, the developer created a package.json file for their application by using the

command npm init. This command will prompt the developer for several things, name, and

version etc. The developer then installed Express in the projects directory and saved it in the

dependencies list. Express is a lightweight and adaptable Node.js web application

framework that offers a comprehensive range of functionality for online and mobile apps.

39 | P a g e

39

 Figure 29 - Backend project setup

Additionally, the developer installed dotenv, mongoose, and cors. Any cors-related issues

are handled by cors on the backend server. Mongoose is the data model which is a

MongoDb driver. Using Mongoose, the developer builds models that interact with

MongoDb. Our database is MongoDb, however the driver that links to the rest of the

application is Mongoose. Dotenv is a way to store certain code in an environmental variable.

For instance, the URL provided by MongoDb includes a username and password. Since not

everyone should have access to the password, a.env file environmental variable may be

used to conceal it.

 Figure 30 - Installing mongoose, cors & dotenv packages

The developer installed nodemon as a dev dependency, programme that automatically

updates the server anytime a change is made, eliminating the need to restart the server.

The developer also modified the start script to nodemon server.js, which contains all the

application's routes.

40 | P a g e

40

 Figure 31 - Nodemon installation

5.4.1.3 Connecting to the Database

Firstly, the developer created a server.js file and a db.js file. The database connection code

is contained in the db.js file. The developer imported mongoose and created a method

named connect that runs when the developer wants to initalise the database, this is shown

in Figure 32 below. The developer also exported the connect method. The code in the

connect function establishes a connection to the environment variable file's DB_ATLAS_URL.

The developer then provided two incredibly popular parameters, which ensure that the

database contains the correct data objects. Once the database has established a connection,

it will respond with the message "Successfully Connected to db."

 Figure 32 - Connecting to the database, db.js file

41 | P a g e

41

 Figure 33 - Connected successfully to the database.

5.4.1.4 Folder Structure

For good project management, the developer created separate folders for the models,

routes, and controller to give structure the project. This makes the code easier to

understand and manage, especially as the project grows. The folder structure for the project

can be found in figure 34 below.

 Figure 34 - Backend Folder Structure

5.4.1.5 Setting up models, routes and controllers

Firstly, within the controller folder the developer created a vehicle_controller.js file. This file

contains all the code that permits the routes to make POST, GET, PUT, and DELETE requests

to the controller as well as the actions that are to be taken in response to those requests.

42 | P a g e

42

Within the model's folder, the developer created a vehicle_schema.js file which defines all

the properties for that vehicle and casts it is associated SchemaType, for example title,

description etc, and whether it be a String, Date, ObjectId, etc.

Vehicle Schema - Model

Starting with the vehicle schema which is the model. All the code within this file is

mongoose and connects to the mongoose MongoDb driver. The developer imported

Schema and model from mongoose and created vehicleSchema which is a new Schema. The

developer exports it as a model giving it the model's name Vehicle which is a string, and it

exports the vehicleSchema. Exporting the model allows the developer to refer to the model

as just Vehicle. The developer adds properties to the schema that correspond to a

SchemaType. For instance, the vehicle schema in figure 35 includes the make, model, year,

and registration, all of which have the data type String and indicate whether they are

required or not.

Figure 35 - Vehicle Schema

Vehicle Controller

The next phase of the application, the developer implemented the vehicle controller file.

Firstly, the developer imported the vehicle schema. The first method is getAllVehicles, in this

43 | P a g e

43

method if the user tries to get all vehicles it will get all the vehicles from the database and

return them as a JSON. If everything is in order, the developer receives the data that is the

vehicle in the .then block after verifying that the data exists. If an error occurs, respond with

a 500-error code and a JSON message stating that none were discovered. The developer

exports the file along with a list of methods that must be exported to utilise.

Secondly, the developer runs the method getSingleVehicle which finds a single id by its _id

field. The method checks if the id exists in the database and returns the vehicle data for that

id in a JSON. If ID is successful, a status of 200 is returned. A 404 error is generated with the

message "Id number not found" if the id is not found.

Thirdly, the developer created a method, addVehicle which is a little different as it is a POST

request. A POST request expects JSON within the body. That JSON should have the

properties in vehicle schema, make, model, reg etc. Vehicle.create is what creates a vehicle

and vehicleData is the data being implemented in the request body. Vehicle data is equal to

the request body which means whatever the request body is, is now equal to the

vehicleData. If the creation of the vehicle is successful, it responds with 201, indicating that

there has been a change. If it is not successful, it responds with a 422 which is a

unprocessable entity. This indicates that there is an error in the request body that is

attempting to be submitted.

Figure 36 - Request body in Insomnia

Below in Figure 37, is a validation error, which is also part of mongoose. If the developer

attempts to add data but the data that is trying to be added in the request body, does not

follow the rules of the schema that you are trying to add that data to, a Validation Error will

be returned.

Figure 37 - Validation Error

44 | P a g e

44

Vehicle Routes

In the routes file the developer imported the vehicle controller. If we get vehicles, we want

to get all the methods that were exported in the controller file, for example, getAllVehicles,

getSingleVehicle, addVehicle and editVehicle as seen in Figure 38 below.

Figure 38 - Vehicle Routes

5.4.1.6 User – Login & Register.

If a user is not registered or logged in, they should be unable to make any application

requests.

User Schema

Firstly, the developer created the user model, which is the schema. The user schema has the

name, email, password, and mechanic. The mechanic data type is Boolean, which means

that if the mechanic is logged in, mechanic = true; if the customer is logged in, mechanic =

false. The developer introduced a few more rules, including trim, lowercase, and unique, as

seen in Figure 39 below. Trim is used to remove any whitespace between a string.

Lowercase is set to true, indicating that it will be converted to lowercase and saved in the

database. Unique ensures that the email address is unique in the database, so that if

someone has already registered with that email address, they cannot re-register with the

same email address. The timestamp indicates when a user was created or modified,

mongoose assigns createdAt and updatedAt to the user schema.

45 | P a g e

45

Figure 39 - User Schema

User Controller

Register function needs to run when a user goes to /register, the controller then connects to

the model and adds that user to the database. If the model, then realises that the email is

already in use it will send back and error.

Firstly, the developer created a newUser object which gets the users details from the

request body. Creating a new user that has a name, email, password. To encrypt the

password the developer installed and imported bcrypt, newUser.password refers to the

password being used to register the user. The password is then going to hashed and then

46 | P a g e

46

stored as the user's password. The 10 makes the encryption more difficult to crack by

adding a little amount of salt. newUser.save saves the user; if an error occurs, it returns a

404-error message; otherwise, it returns the user's information in JSON, minus the

password, which is set to undefined as seen in Figure 40. For security purposes, the

password is encrypted in the database but not returned as JSON.

Figure 40 - Register User

Figure 41 - password not returned in JSON, stored in the database

The user is not going to write an encrypted password, the password they will use is their

actual password. For example, secret123. The backend will receive the user's password and

47 | P a g e

47

use it to decrypt the password stored in the database before verifying that it is the right

password.

 User.FindOne retrieves the user from the database and checks to see whether the email in

the request body matches the email for that user. The developer created a custom function

to compare the password which was created in the user schema. The function takes in a

password, sees if they match & returns the results. Using a bcrypt method compareSync the

developer compared password with this.password which refers to the current user and

returns results.

Figure 42 - Compare Password function

After that, the developer installed jsonwebtoken and imported jwt to the user controller.

Once this was installed it became possible for the developer to generate the token. Sign will

create a token and it takes in two parameters, the first is the payload, the second is the

secretOrPrivateKey. Whatever is in the method will be used by Sign to create a token, such

as an email address, a name, or an ID mechanic. It uses the app key which is the secret or

private key from the .env file, which is the name of the project, to validate the token the

same key is used.

Figure 43 - JSON web token

User Routes

48 | P a g e

48

The developer created a file user.js within the routes folder. The developer imported the

user controller and added the login and register routes which are both post requests as seen

below in Figure 43.

Figure 44 - User Schema

The developer used the same method as vehicle schema, controller, and routes to build the

other collections. Once the collections grew, the more collections connected or had

relations. Using the Entity Relationship that was created in the design chapter the developer

was able to tell easily what objects related to each other within the system. For example,

one customer can have many vehicles. Using foreign keys within the schema aloud the

developer to make these connections.

Figure 45 - Vehicle schema, customer FK

49 | P a g e

49

Figure 46 - Folder structure of the controllers, models and routes

5.5 Setting up the frontend environment

5.5.1.1 Expo Go.

As the developer was new to React Native, they chose to use Expo Go. Expo is a collection of

React Native-based tools and services. It made it possible for the developer to begin writing

code right away. Firstly, the developer downloads the Expo Go app from the apple play

store. With the condition that the phone was linked to the same wireless network as the

computer, this app permitted the developer to run the application on their mobile device.

50 | P a g e

50

On iOS, the developer scanned the QR code from the application's terminal using the

camera's built-in scanner.

5.5.1.2 Creating a new React Native project

The developer began running the react native application by using the command ‘npx

create-expo-app MajorProject_Frontend,’ the developer then ran the command cd

MajorProject_Frontend which changes the current working directory. Following this, the

developer ran the command npx expo start which successfully ran the application and it was

ready to be modified.

To begin, the developer experimented with the app.js file, adjusting text values, adding

pictures, and buttons, among other things, to acquire a feel for the technology.

Firstly, the developer got started with the navigation through to create structure within the

application. React navigation is a standalone package that allows developers to include

navigation capabilities in their applications. The developer installed the react-navigation

library into the application. Each navigation in React Navigation resides in its own library,

which serves as the navigators' common framework and building blocks.

Figure 47 - Installing react navigation package

Figure 48 – React native screens

Figure 49 - Installing react native stack

51 | P a g e

51

The application was able to transition between screens and handle the navigation history by

utilising React Navigations' native stack navigator. Based on the path a user has travelled

inside the programme, the stack navigator controls the appearance of the relevant screen.

The first thing the developer did was use the createNavigationStackNavigator method to

build a native stack navigator. This function produces an object with the values screen and

navigator. As you can see in Figure 50, the navigator contains screen elements as it is

children which define the configuration routes. The screen component accepts a name

which allows the user to navigate to that specific screen. As seen below in Figure 50, the

‘welcome’ route corresponds to the WelcomeScreen component, the SecondScreen route

corresponds to the SecondScreen components, and so forth.

Figure 50 - Navigation Container

The developer set isLoggedIn is true show the homepage (which contains the tab

navigation), the mechanic Profile, Appointment Screen, Single Report, Blog Post and Report

Screen, otherwise show the welcome screen, second screen, login and register screen. To

access the crucial screens, the user must first register and log in. To access the crucial

screens, the user must first register and log in.

To move between screens the developer used the navigation prop that is passed down to

the screen components.

Once the user is logged in the developer implemented a bottom tab navigator. The user may

navigate between several routes using this straightforward tab bar at the bottom of the

screen. To utilise this navigator, the developer installed the dependencies as seen in Figure

52 | P a g e

52

51.

Figure 51 - Bottom tab bar navigation

Instead of a Stack.Navigator and Stack.Screen, the bottom tab bar consists of Tab.Navigator

and Tab.Screen. There are several options that the developer used to configure the screens.

These are specified under screenOptions. The developer set the labels to false as they chose

to just use tab bar icons for the overall bottom navigation. If an icon is pressed the active

colour changes to purple otherwise the icons are grey.

The navigation changes whether a mechanic is logged in or a client. Both users press the

same icon but are brought to different screens. The developer made this possible using if

statements. When a mechanic hits the document icon, they are sent to an appointments

page, however when a client presses the document icon, they are taken to the see all

reports screen. If a mechanic is logged in, display the mechanic homepage; otherwise, show

the client homepage.

Figure 52 - bottom tab bar, if statements

53 | P a g e

53

5.6 Conclusion
The implementation chapter discusses the scrum agile methodology and how it was

implemented for the project’s application. The process was sectioned into two-to-four-week

sprints, these sprints where crucial as they allowed the developer to stay motivated,

organised and up to date with each task that needed completed.

The integrated development environment (IDE) for this application was also covered in

detail by the developer. Visual Studio Code was the IDE used for both the backend and

frontend applications.

The developer began by creating a database using MongoDb. The developer went through

each phase of developing the database and how the developer connected the backend to

MongoDb. Once the database was created the developer began setting up the backend.

The backend was implemented using Node.js and Express.js. The first thing that happens is

the backend goes through ‘Routing’. The request is sent into ‘Routing,’ the routes job is to

route to the appropriate controller. Routing will check weather ‘appointments’ exists on the

server, if it exists it will then send that request to the appropriate controller. For example, if

you try to get appointment/id number it will then find that route and connect it to that

specific controller.

Majority of the work is done in the controller, it opens the request and makes sure if the

user is creating an appointment, it has all the needed attributes, for example, title, date,

description etc, making sure it has all the details that is required before connecting to the

Model. If it finds that the request is invalid, it will respond back to the client. This is the

response that the developer sees in the frontend.

Another example is the login request, if the users logs in, that request comes into routing,

routing will find the /login route, it will then say that that route should run our /login

controller file, it will open the login controller file and that is where all the logic is. Logic

means that in the controller it is checking whether the email was passed in as a request. If

the user forgets to add an email address in the controller will respond with an error.

After building a strong backend, the developer started putting it into practise and testing

using Insomnia. The developer also concentrated on building the frontend using React

Native

54 | P a g e

54

6 Testing

6.1 Introduction
The many techniques for testing the application's backend and frontend will be covered in

the testing chapter. This chapter is presented in three sections: API Testing, Functional

Testing and User Testing.

The developer will perform API testing for the backend. Insomnia, a REST client framework,

will be used to test the application's REST API. Each API route will be tested and discussed by

the developer.

To validate the application's functioning, the developer will conduct functional tests based

on the criteria provided in the requirements chapter. Functional testing is a method of

testing that aims to determine if each application feature functions in accordance with the

needs of the program. Each functionality is compared to the associated requirement to see

if its output matches the end user's expectations. Testing is carried out by supplying sample

inputs, recording the outcomes, and confirming that the actual results match the predicted

results. (Microfocus).

User testing covers the entire range of user experience a client has with the product. This

will include all their responses to the item, from when the client obtains it to when they

stop using it. The developer will give the client a set of goals to see their outcome and

conduct a set of results.

6.2 API Testing
API testing is the process of sending requests to an API and monitoring the responses to

ensure they are behaving as expected. API testing is intended to get access to an API's

functionality, dependability, performance, and security. As a result, this is a key component

of the API development lifecycle. (HubSpot, Anna Fitzgerald. 2022). API testing may be

approached in numerous ways, including functional testing, load testing and validation

testing.

 The developer chose Insomnia as an API testing tool which helps build high quality API’s.

Insomnia is a REST API, REST stands for (Representational State Transfer). This means when

a client requests a resource using a REST API, the server transfers back to the current state

of the resource in a standardized representation. XML, PHP, JSON, and plain text are just a

few of the many ways in which this data might be expressed. (HubSpot, Jamie Juviler.

August 2022)

The developer began testing the API routes before hosting the backend & beginning on the

frontend. JSON is the most popular file format used for testing APIs, as you will see below,

the developer implements this format.

55 | P a g e

55

API CALL ACTION

POST/ api/users/login/ Allows the user/mechanic to login

POST/api/users/register Allows the user or mechanic to register

GET/api/apps/ Gets a list of all appointments

GET/api/reports Gets a list of all reports

GET/api/reports/users Get all reports associated to a certain user

Get/api/reports/{id} Gets a specific report by id

POST/api/reports Creates a report

PUT/api/reports/{id} Updates a specific report by id

GET/api/vehicles Get all vehicles

GET api/services Get all services

GET/messages Get all messages

Figure 53 - Logged in request and response

Figure 53 above displays a POST request which is sent to the hosted applications API. The

API expects an email, password as shown in the JSON body. After the request is sent, the

expected response should return a msg stating the client is logged in to Pre-Purchase Car

Inspections, a JSON web token, and data that is related to the users that has just logged in.

Once the user is logged in, they get a HTTP status code of 200 meaning the response has

been successful.

6.2.1 GET request for all reports

Figure 54 - GET request for reports

Figure 54 shows a GET request to the hosted applications API. This request should show a

list of all the reports that are in the MongoDb database and any relational data.

56 | P a g e

56

Figure 55 - GET Response of all reports

Figure 56 - Continued response

The answer to this request in Figures 55 and 56 above was a success, giving the status code

of 200, suggesting the resource was successfully obtained and delivered in the message

body. The answer displays the specifics of each report, such as miles, lights, and so on.

57 | P a g e

57

Additionally, it displays information about the mechanic, client, and vehicle that the report

is associated to.

6.2.2 GET request for reports associated to a specific user.

Figure 57 - Get reports for specfic user

Figure 57 shows a GET request which should show a list of reports associated the user that

is logged in whether that be a mechanic or a client.

Figure 58 - User currently logged in

Figure 59 - Token used

58 | P a g e

58

Figure 60 - Response from the GET request

Figure 60 shows the response to the GET api/reports/user request. It shows the list of

reports associated with the person that is logged in. In this case one report is related to the

user that is currently logged in. In Figure 10 it shows the details of the user that is currently

logged in & their token. The token is then used in the Headers Authorization along with

Bearer as the login is required to make this specific request. The response shown in Figure

12 shows the customers details which you can see correspond to the details shown in Figure

10. If a mechanic is logged in the response would show the reports associated to that

specific mechanic.

6.2.3 GET request for a report with a specific id.

Figure 61 - Request for a single report

Like the GET requests for all reports, the request for a single report does not need a JSON

body. Figure 61 shows the developer requested the report with the id as shown above. This

response shown show a single report with that specific id.

59 | P a g e

59

Figure 62 - Get report by Id

If the response is successful, a single report, as seen above, should be shown. As you can see

it has the same Id as shown in the GET request made in Figure 62. It also shows any data

that is related to this specific report i.e., mechanic, customer, and vehicle.

60 | P a g e

60

6.2.4 POST request which creates a report.

Figure 63 - POST request to create a report

Figure 63 shows the developer making a POST api/reports request. Creating a report

requires a JSON body as shown above. The JSON body requires specific text to make the

request i.e., mileage, lights, customer ID, mechanic ID etc. The request will not be successful

without these inputs.

61 | P a g e

61

Figure 64 - Response for creating a report

Figure 64 shows the response when making the POST api/reports/ request. Once the report

has been created you may request a single report with this ID; it will appear when the

developer requests all report and, in each example, I have shown thus far.

6.2.5 PUT request which updates a specific report.

Figure 65 - Request to update a specific report

62 | P a g e

62

Figure 65 shows the developer sending a PUT request with a specific ID, this allows the

developer to test whether the user can edit a report. As seen above the developer edited

the comments input, using the JSON body. The response should show the updated version

of this report.

Figure 66 - Updated version of a specific report

Figure 66 depicts the developer's modified version of the previously submitted request.

answer displays the returned data for this report, along with the freshly modified

comments.

6.2.6 DELETE request made for a specific report

6.2.7 Bad request, errors

To highlight how important testing may be at times, the developer adjusted several requests

to highlight the difference in the response.

Figure 67 - Id with adjustment

63 | P a g e

63

Figure 68 - 400 bad request

The ID was changed by the developer to illustrate that the ID is invalid and what the

response will be. The ID is not valid, and a 400 Bad Request response code is shown.

Figure 69 - Reports altered to show error

Figure 70 - 422, Unprocessable Entity

The developer changed the windscreen and wipers text inputs in the JSON body to orange.

It returns a status code of 422, meaning there is a validation error. The validation error

occurred because the developer changed the colour to orange when the input should have

been Green, Yellow, or Red, as indicated in Figure 69 above. The message indicates to the

64 | P a g e

64

developer that orange is not a valid Enum value for the path which allows the developer to

solve the issue with ease.

6.3 Functional Testing
This section outlines the functional tests performed on the app. These functional tests are

classified as follows:

• Navigation

• CRUD
Functional testing ensures that the software produces the results that an end user is looking

for by comparing each program function or feature to the requirements standards.

(TechTarget, Corinne Bernstein. Oct 2021). Functional testing was implemented by the

developer as a technique for quality control. Functional testing analyses an application's

ability to successfully carry out a particular task.

Functional testing is often performed using a Black Box Testing approach, which means that

the tester is uninterested in the core logic of the system being evaluated. The sole outcome

that the tester is concerned about is whether the actual output matches the intended

output.

6.3.1 Navigation

Text
No

Test Case

Input

Expected
Output

Actual
Output

Comment

1. Welcome
Screen

Get started
button is
pressed

Redirects to the
login screen

Redirects to
the login
screen

User can
successfully
redirect to the
login screen
once they
pressed the
get started
button

2. Login Screen Login button
is pressed, or
register link
is pressed

Redirects to
register screen
or to the
homepage
once logged In

Redirects to
register
screen or to
the
homepage
once logged
In

User
successfully
redirects to
the homepage
once they
pressed the
login button
and redirects
to the register

65 | P a g e

65

screen once
the register
now link was
pressed

3. Register
Screen

Register
button is
pressed

Redirects to the
login screen

Redirects to
the login
screen

User
successfully
redirects to
the login
screen when
they pressed
the register
button

4. Homepage Blog card is
pressed,
mechanic
profile is
pressed,
service
button is
pressed

Redirects to the
blog screen,
mechanics
profile,
appointment
page

Redirects to
the blog
screen,
mechanics
profile,
appointment
page

User
successfully
redirects to
the blog
screen once
they pressed
the blog car,
successfully
redirect to the
mechanic
profile of the
specific user
they pressed,
successfully
redirected to
the book an
appointments
page once
they pressed
the service
button. Each
page they
could redirect
back to the
homepage.

 Mechanic
Profile

Mechanic is
pressed on
the
homepage

Views all
information
about the
specific profile
pressed,
redirects back
to the
homepage

Views all
information
about the
specific
profile
pressed,
redirects
back to the
homepage

User
successfully
redirected to
the mechanics
profile and
redirected
back to the
homepage

66 | P a g e

66

 Blog Screen When the
blog card is
pressed on
the
homepage

Views all
information
about the blog
and redirects
back to the
homepage

Views all
information
about the
blog and
redirects
back to the
homepage

User
successfully
viewed all the
information on
the blog
screen and
redirected
back to the
homepage
once finished.

 Reports The reports
tab icon is
pressed on
the bottom
tab bar

Views all
reports,
redirects back
to the
homepage or
to a single
report

Views all
reports,
redirects
back to the
homepage or
to a single
report

User
successfully
redirected to
the reports
page once
they pressed
the reports
icon on the
bottom tab
bar

 Single Report The reports
card is
pressed on
the reports
page

Redirects back
to the reports
page

Redirects
back to the
reports page

User
successfully
views the
single report
page and can
redirect back
to the reports
screen

 Appointments The plus icon
is pressed on
the bottom
tab bar

Book an
appointment.
Redirects to the
homepage or
to the
confirmation
page

Book an
appointment.
Redirects to
the
homepage or
to the
confirmation
page

User
successfully
redirected to
the book an
appointments
page once
they pressed
the plus
button on the
bottom nav
bar

 Messenger
Screen

The
messenger
icon button
is pressed on
the bottom
tab bar

Views all
messages on
the messenger
screen

Views all
messages on
the
messenger
screen

User
successfully
redirected to
the messenger
screen once
they pressed
the messenger
icon on the

67 | P a g e

67

bottom tab
bar

 Log out Logout
button is
pressed on
the bottom
tab bar

Redirects back
to the welcome
screen once
pressed logout

Redirects
back to the
welcome
screen once
pressed
logout

When the user
pressed the
logout button
on the bottom
tab bar they
successfully
logged out and
redirected to
the welcome
screen

6.3.2 CRUD

Test
No.

Test Case

Input

Expected
Output

Actual
Output

Comment

1. Add a new user
to the
application

Email
Address,
Username,
Password

New user is
added

New user
added

User is
successfully
created & can
now log in.

2. Login to the
application

Username,
Password

Logged in &
redirected to
the
homepage

Logs in & is
redirected to
the
homepage

User
successfully
logs in and is
redirected to
the homepage

3. Customer can
choose a
service

Chose Elite,
Premium

Customer can
click on a
service and is
redirected to
the create
appointment
page.

Redirects to
the
appointments
page

User can
redirect to the
appointments
screen but
does not show
which service
they chose

4. Customer can
create an
appointment

Mechanic ID,
Vehicle ID,
Service ID,
Location,
Start time,
End time
Date.

Appointment
is
successfully
created and
published.

Customer is
unable to
create an
appointment

Customer
cannot create
an
appointment,
the developer
never
managed to
get that
functionality
working

68 | P a g e

68

5. View all
appointments
for that specific
user.

View
appointments
on homepage

A list of all
the apps for
that specific
user is
displayed

Customer can
view all
appointment
in the
database, not
for specific
user

Customer can
view all
appointment
in the
database, not
for specific
user

6. Mechanic can
create a report
and assign it to
a specific
customer.

Customer ID,
Vehicle ID,
Mileage,
Lights,
Windscreen,
Wipers,
Horn,
Ac,
Air filter,
Belts,
Suspension,
Steering,
Test Drive,
Diagnostics,
Body work,
Tyres,
Brakes,
Comments,
Date

Report is
successfully
created and
is published,
assigned to a
specific
customer.

The mechanic
can create a
report and
assign that
report to a
specific
customer

The mechanic
can create a
report and
assign that
report to a
specific
customer

7. View all reports
for specific
customer

Go to reports
page

A list of all
the reports
for that
specific user
is displayed

The customer
can view all
reports in the
database but
not ones for
just that
specific client

The customer
can view all
reports in the
database but
not ones for
just that
specific client

8. User can view a
single report

Go to reports
page and
click on a
specific
report

A single
report is
displayed
showing all
the
information
for that
report.

9. Pay for the
service they
chose.

Go to
payment
page

User can
confirm
appointment
booking and
pay for the
service

User is
unable to pay
for the
service

User is unable
to pay for the
service, this
phase is
uncomplete

69 | P a g e

69

and needs
further work

 Logout Press the
logout button

Redirected to
the welcome
screen

Redirected to
the welcome
screen

User
successfully
logs out of the
application &
is redirected
to the
welcome
screen

6.3.3 Functional Testing Results

The outcome of the functional testing reveals each functionality and whether it was

effective or not. The navigation testing proved to be extremely successful. The navigation

performs as predicted in terms of the user flow diagrams in the requirements chapter.

Testing with proper and legitimate inputs produced the desired results.

Although CRUD testing was not as effective, it did show what functionality needed to be

improved and what functionality was a success.

6.4 Conclusion
This project's testing phase covered the numerous ways the developer tested the

programme. First, the developer demonstrates API testing, which examines the

functionality, dependability, performance, and security of the hosted apps API. The REST API

was tested using Insomnia, which is a client framework. The developer illustrated the

process by which they conducted multiple API requests and the variety of responses that

were returned. This was a critical step in the development of the API; without it, the

backend would not have been as successful.

Afterwards the developer conducted functional testing which consisted of two steps CRUD

and navigation. For quality assurance purposes, the developer used these methods of

testing. The developer conducted black box testing to test the functioning of the software

without looking at the underlying code structure, implementation details, or knowledge of

the product's internal routes. These functional tests were developed in accordance with the

requirements given in the requirements chapter. The functionality testing showed that the

navigation throughout the application was extremely successful. A few incomplete CRUD

features were discovered during the CRUD testing. These features still require work, and

they also require greater attention. For each test, the developer defined a test case, which

was then followed by the input, expected output, actual output, and any developer-

provided comments.

70 | P a g e

70

7 Project Management

7.1 Introduction
Project management offers structure and control over the project environment so that the

agreed-upon activities create the proper results that meet the expectations of the users.

Under the leadership of the developer, project management is the regulated

implementation of the project plan. The developer will go through how the project was

handled in this chapter.

 It depicts the project phases, beginning with the project idea and progressing through

requirements gathering, project definition, design, implementation, and testing. It also

examines Trello, GitHub, and project developer's diaries as project management tools.

The developer will discuss their reflection of the overall project. This will conduct of the

developers views on the project, what they have learnt while developing phases their

application, how the project went working with a supervisor, any technical skills they learnt

and any extra skills that would help with the future of the applications development.

7.1.1 Testing

7.2 SCRUM Methodology
Scrum is an agile software development technique that is focused on interactive and

incremental procedures. Scrum is a quick adaptive, flexible, and successful agile framework

that is intended to provide value to the client throughout the project's development. In the

previous chapter, the implementation chapter, the developer went into great depth about

Scrum technique.

A backlog is a phrase that originated in the agile project management system and refers to a

list of tasks which the developer has still to finish to complete a project. Microsoft Planner

was used to organise the backlog, as stated in section 6.4.1 of this chapter.

7.3 Project Management Tools

7.3.1 Microsoft Planner

Microsoft Planner is a planning application that is available on the Microsoft 365 platform.

Microsoft Planner is a team-work orientated tool which can be used in a variety of diverse

ways. The developer selected to take advantage of this application to stay structured and

focused on what needed to be completed, what they were working on, and what they had

achieved. This tool also allowed the developer to communicate with their supervisor,

allowing the supervisor to observe how the developer was progressing with their entire

project.

71 | P a g e

71

Figure 71 - Microsoft Planner

As seen above in Figure 71, the developer was able to drag and drop cards under every

heading, and additionally label each one. The developer was able to assign each card a due

date to allow them to keep notified on each task approaching its deadline.

7.3.2 GitHub

GitHub is an online software platform which is used for storing, tracking, and collaborating

on software projects It enables software developers and engineers to build remote, public-

facing cloud repositories for free. All the code and documentation are in one location,

making it easy to collaborate with others. Additionally, GitHub makes it relatively easy to

keep track of modifications and go back to prior versions of your project. It increases the

efficiency of coding by catching mistakes before pushing updates. (HubSpot, Jamie Juliver.

October 2022)

Figure 72 - Github commits waiting, github classroom for frontend

72 | P a g e

72

Figure 73 - Github Backend

Once the developer set up a repository for GitHub, they were able to copy it to their device,

add and modify files locally, then “push” their changes back to the repository where the

changes were displayed in public. The developer used GitHub for both the backend and the

frontend of this application as shown above. The developer used GitHub desktop which

simplified the development workflow. Using GitHub desktop, the user could commit and

push their workload through visual studio code. Using VS Code and GitHub desktop allowed

the developer to make regular commits at the click of a button, making the process a lot

more efficient.

7.4 Conclusion
The project management chapter focuses on the overall success of project control and how

these goals were fulfilled. The developer discussed each project phase and explained the

issues that emerged.

As project management tools, the developer used GitHub and Microsoft Planner. GitHub

made is easy to keep track of modifications. Additionally, it allowed for the updating of

every version and the cloud storage of both the backend and the frontend.

The Microsoft Planner assisted in keeping track of each task that needed to be completed

next, what task the developer was working on, and what task the developer had

accomplished.

73 | P a g e

73

8 Conclusion
The projects objectives were to implement a pre purchase car inspection mobile application.

The mechanics are qualified to examine and perform diagnostics on the following car that

the customer is intending to buy. This provides the consumer piece of mind when

purchasing used automobiles since the technicians will assess and inspect the vehicle for

you.

The client can interact with the mechanic through messenger, book an appointment with a

specific mechanic. The mechanic can upload reports for a specific client. This allows the

client to read past and previous reports for different vehicles they have gotten checked. The

customer has a choice between two services: Premium and Elite. Each one costs differently

and produces various results.

The developer chose to use MERN stack to build this application. MERN stack is a web
development framework consisting of the stack of MongoDB, Express.js, React and Node.js.
For the frontend, the technology the developer chose was React Native. React native lets
developers create truly native app and does not compromise the user’s experience. It allows
developers to create native apps for Android, iOS and more. (ReactNative)

In the research chapter, the developer explored and determined software development,
what is the best software development approach and what is the most suitable framework
for building a mobile application. Building a project can raise many dilemmas so research
allowed the developer to explore every possibility and decide what path is best for the
project. This enabled the developer to conclude that the best technologies for the
application were MERN Stack) and the software process (Agile development), and the
developer selected native development over hybrid development and react native as the
framework.

In the implementation chapter, the developer discusses the application's development
environment and goes into great depth about the stages of each sprint, the aim, the
difficulties, and the information acquired.

The developer conducted two parts to functional testing, CRUD & navigation. The navigation
testing determined how the user and mechanic navigated through the screens. The results
helped the developer to improve critical user flows and sharpen the information
architecture. The developer also did API testing using Insomnia, this helped to determine
any errors or issues within the backend.

The project management chapter discusses process control, the tools that were employed,
and how the application benefitted. The tools the developer chose to use were GitHub and
Microsoft Planner. These proved critical to the developer's ability to stay on track and
structured during each sprint.

8.1.1 Your views on the project

Overall, the project went exceptionally well and has been nothing but good to both my

professional and personal development. I have learned a lot of new abilities, but I have also

74 | P a g e

74

learned a great deal about myself. It was occasionally really challenging, mentally. The

hardest part was to maintain my drive and attention.

Previously, I have worked on projects of this scale within a team setting. Knowing you are

disappointing someone else is enough to keep you motivated, keeping yourself motivated is

a little harder to accomplish. Nonetheless, I succeeded in achieving my goal.

At the beginning, I genuinely did not think I would get this far, I struggled to even find a

concept for my project and now I am at the finish line with what I believe is a great mobile

application and with further development could be a great business plan.

The application itself requires some further work to be completed. The backend, I feel, is

quite solid; nevertheless, the frontend, while robust, needs further work. The CRUD

functionality for the appointments and the messenger between both the client and

technician was uncomplete.

Despite that, there is always opportunity for improvement, the overall UI design is one of

the greatest aspects of the entire programme, and I am extremely proud of it. Building the

UI/UX design became one of the parts I enjoyed the most and is something I would love to

continue to develop on throughout my professional development.

8.1.2 Working with a supervisor

Working with a supervisor benefited both me and my application. It became highly

reassuring to know that someone was there to guide me through the process.

Knowing you have a weekly meeting with your supervisor keeps you on track since you

constantly need to bring something new to the meeting to show you have been working

consistently.

Occasionally, before meeting with my supervisor, I was extremely deflated and felt

unmotivated. Despite this, afterwards I always felt so much better about the situation and

became more motivated to achieve my goal.

The ability to exchange views with someone of such superior knowledge and expertise was

also extremely valuable, for which I will be forever highly grateful for.

8.1.3 Technical skills

Using the MERN stack, I developed Pre-purchase Car Inspections, which helped me

complete a substantial number of learning objectives. Since I had no prior experience using

React Native, creating the application required a significant amount of self-learning. Due to

the lack of previous expertise with this technology, this was the component that was the

most difficult. If I had chosen a technology, I was familiar with, I believe the process would

have gone much smoother, however there would have been obvious challenges.

This programme became possible through online videos, courses but mostly technology

documentation. The learning and development of the frontend of this application heavily

relies on the React Native documentation and the React navigations docs.

75 | P a g e

75

I had minimal experience designing mobile applications, although developing a strong UI to

enhance the users experience was extremely critical.

8.1.4 Further competencies and skills

Future development would include concentrating on the components that were not

accomplished. The messenger between both the client and the mechanic. Also, after making

an appointment, you may continue and pay for that reservation. The CRUD functionality for

booking an appointment.

For developing the mobile application further, the developer would need to build their

business capability skills. Business skills tend to play a critical role within this field. It is

necessary for an app to be able to stand out amongst the competition.

76 | P a g e

76

References

Apps Far Outpace Browsers in US Adults’ Mobile Time Spent. (2020, July 9). Insider

Intelligence. https://www.insiderintelligence.com/content/the-majority-of-americans-mobile-

time-spent-takes-place-in-apps

API Testing: What It Is, Why It’s Important & How to Do It. (2022, February 5). API Testing:

What It Is, Why It’s Important & How to Do It. https://blog.hubspot.com/website/api-testing

Braam, H. V. (2022, December 5). Navy Blue: Color Code, Meaning, Symbolism and

Psychology - Color Psychology. Color Psychology. https://www.colorpsychology.org/navy-

blue/

Brewster, C. (n.d.). 13 Types of Software Development | Trio Developers. 13 Types of

Software Development | Trio Developers. https://www.trio.dev/blog/types-software-

development

Expo. (n.d.). Expo. https://expo.dev

How Not to Burn Budget with Agile Scrum | Aristek Systems. (n.d.). How Not to Burn Budget

With Agile Scrum | Aristek Systems | Aristek Systems. https://aristeksystems.com/blog/how-

not-to-burn-your-budget-with-agile-scrum/

Iannace, K. (2021, October 31). 10 Best Hybrid App Examples -. Designli Blog.

https://designli.co/blog/5-best-hybrid-app-examples/

Kosmal, J. (2022, November 30). How does React Native work? Understanding the

architecture. Medium. https://medium.com/front-end-weekly/how-does-react-native-work-

understanding-the-architecture-d9d714e402e0

Mobile App Download Statistics & Usage Statistics (2023) - BuildFire. (2021, December 20).

BuildFire. https://buildfire.com/app-statistics/

Mobile Game Market Trends for 2023 You Need to Know - Udonis. (2023, May 4). Udonis

Mobile Marketing Agency. https://www.blog.udonis.co/mobile-marketing/mobile-

games/mobile-game-market-trends

Montaño, D. (2023, February 2). Why use Flutter: Pros and Cons of Flutter App

Development - Waverley. Waverley. https://waverleysoftware.com/blog/why-use-flutter-pros-

and-cons/

React Native Pros and Cons [2023 Update]. (n.d.). React Native Pros and Cons [2023

Update]. https://www.netguru.com/blog/react-native-pros-and-cons

REST APIs: How They Work and What You Need to Know. (2022, August 30). REST APIs:

How They Work and What You Need to Know. https://blog.hubspot.com/website/what-is-

rest-api

77 | P a g e

77

Singh, S. (2023, January 30). Native vs Hybrid vs Cross Platform - What to Choose in 2023?

Insights - Web and Mobile Development Services and Solutions.

https://www.netsolutions.com/insights/native-vs-hybrid-vs-cross-platform/

Singh, R. (2022, May 20). Waterfall Methodology. Institute of Project Management.

https://www.projectmanagement.ie/blog/waterfall-methodology/

Team, S. E., Freeman, C., Chakraborty, M., & Iyengar, V. (2017, March 28). Top 4 software

development methodologies. Application Security Blog.

https://www.synopsys.com/blogs/software-security/top-4-software-development-

methodologies/

The Good and the Bad of Flutter App Development. (2022, August 4). AltexSoft.

https://www.altexsoft.com/blog/engineering/pros-and-cons-of-flutter-app-development/

The Model View Controller Pattern – MVC Architecture and Frameworks Explained. (2021,

April 19). freeCodeCamp.org. https://www.freecodecamp.org/news/the-model-view-

controller-pattern-mvc-architecture-and-frameworks-explained/

Toal, R. (2014, July 2). What Is A JavaScript Framework? | Code Institute. Code Institute

Global. https://codeinstitute.net/global/blog/javascript-framework/

Top Mobile App Development Frameworks 2023. (2023, May 3). Top Mobile App

Development Frameworks 2023. https://www.kellton.com/kellton-tech-blog/top-10-mobile-

app-development-frameworks-in-2023

Top 5 CSS Frameworks for Developers and Designers | BrowserStack. (2022, March 25).

BrowserStack. https://browserstack.wpengine.com/guide/top-css-frameworks/

What is Functional Testing? Types & Examples | Micro Focus. (2023, May 4). What Is

Functional Testing? Types & Examples | Micro Focus. https://www.microfocus.com/en-

us/what-is/functional-testing

What Is Functional Testing? Definition from SearchSoftwareQuality. (2021, October 1).

Software Quality. https://www.techtarget.com/searchsoftwarequality/definition/functional-

testing

What Is Scrum Methodology? & Scrum Project Management. (2022, December 23).

Nimblework. https://www.nimblework.com/agile/scrum-methodology/

What is software development? | IBM. (n.d.). What Is Software Development? | IBM.

https://www.ibm.com/topics/software-development

What is System Software? | Simplilearn. (2022, November 14). Simplilearn.com.

https://www.simplilearn.com/tutorials/programming-tutorial/what-is-system-software

What Software Development Approach to Pick: Native, Hybrid or Cross-Platform? -

touchlane. (n.d.). What Software Development Approach to Pick: Native, Hybrid or Cross-

Platform? - Touchlane. https://touchlane.com/blog/software-development-approach-native-

hybrid-or-cross-platform

78 | P a g e

78

Wu, W. (2018, January 1). Theseus: React Native vs Flutter, Cross-platforms mobile

application frameworks. React Native Vs Flutter, Cross-platforms Mobile Application

Frameworks - Theseus. http://www.theseus.fi/handle/10024/146232

Vietnam, A. (2020, October 18). Flutter Advantages: 10 Reasons Why Using Flutter For

Your Next Project. Medium. https://agiletech.medium.com/flutter-advantages-10-reasons-

why-using-flutter-for-your-next-project-d8bdd065ada4

7 Key Benefits of Using the Agile Scrum Methodology | Jile. (2023, January 7). Jile.

https://www.jile.io/blogs/benefits-of-agile-scrum-methodology

187 Mobile Gaming Statistics for 2023: The Ultimate List | Udonis. (2023, May 4). Udonis

Mobile Marketing Agency. https://www.blog.udonis.co/mobile-marketing/mobile-

games/mobile-gaming-

statistics#:~:text=As%20of%202023%2C%20there%20are,200%2C000%20on%20Apple%2

0App%20Store.

