

An Exploratory Analysis into Face
Recognition, Neural Networks and How
They Can Be Used to Create an Attendance
Based System

Clare O’Brien

N00180771

Supervisor: John Dempsey

Second Reader: Mohammed Cherbatji

Year 4 2021-22
DL836 BSc (Hons) in Creative Computing

1 | P a g e

Declaration of Authorship

The incorporation of material without formal and proper acknowledgement (even with no
deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should
document this in your submitted work and if you have any doubt as to what level of
discussion/collaboration is acceptable, you should consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone else, which
may well bring you under suspicion. Do not to leave copies of your own files on a hard disk where they
can be accessed by other. Be aware that removable media, used to transfer work, may also be
removed and/or copied by others if left unattended.

Plagiarism is an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to the
Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook. Please
read carefully and sign the declaration below.

Collusion may be defined as more than one person working on an individual assessment.
This would include jointly developed solutions as well as one individual giving a solution to
another who then makes some changes and hands it up as their own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own

work.

Student: Clare O’Brien

Signed

Failure to complete and submit this form may lead to an investigation into your work.

2 | P a g e

Abstract

An This paper will go into detail about how neural network models are made and why they

have grown in popularity over the years. It will also explain how to develop an attendance-

based system using face recognition. This application will be able to predict via uploading an

image and capturing a snapshot of a person’s face. It will also display the attendance to the

user. The steps involved in the development were to first gather the requirements and decide

which are most important, then research on machine learning and neural networks took place.

After this, the model and application were designed. After the design process is complete the

implementation step of the process began which included creating and choosing a model and

integrating it with an application. For testing the application functional testing, model testing

and user testing were carried out. The results of the testing showed that the application

worked as intended and the model was as accurate as possible.

Further work that could be carried out includes creating a way for the users to state whether or

not the prediction is correct. Automatic addition of new people rather than the image being

saved and the model having to be retrained manually. Creating an admin dashboard for all

training and manipulation to be done within the application and the ability to download the

attendance.

3 | P a g e

Acknowledgements

I would like to thank my supervisor John Dempsey who gave great guidance and advice

throughout the year. I would like to thank my friends for helping with the testing of my

application as well as for the general support they gave me throughout the development of the

project. I would also like to show my appreciation for my family and mentor outside the college

for helping with the development of the project. the lecturers that helped me with various

errors while making the application.

4 | P a g e

Table of Contents

DECLARATION OF AUTHORSHIP 1

ABSTRACT 2

ACKNOWLEDGEMENTS 3

1 INTRODUCTION 7

2 REQUIREMENTS ANALYSIS 9

2.1 REQUIREMENTS INVESTIGATION INTO EXISTING APPLICATIONS 9

2.2 REQUIREMENTS MODELLING 11

2.2.1 Technical Requirements 12

2.2.2 Functional Requirements 12

2.2.3 Non-Functional Requirements 13

2.3 USER RESEARCH AND PERSONAS 14

2.3.1 Survey 14

2.3.2 User Personas 19

2.3.3 Use Case Diagrams 22

2.4 FEASIBILITY STUDY 24

2.4.1 Technologies 24

2.4.2 The Benefits and Issues of the Application 26

2.5 PROJECT PLAN 27

2.6 TEST PLAN 28

2.7 REQUIREMENTS SUMMARY 29

3 RESEARCH 30

3.1 MACHINE LEARNING 30

3.1.1 Supervised learning 30

3.1.2 Unsupervised learning 33

3.1.3 Reinforcement learning 35

3.2 NEURAL NETWORKS 36

3.2.1 Activation Functions 37

3.2.2 Real World ANN Example 38

3.3 DEEP LEARNING 40

3.4 CONVOLUTIONAL NEURAL NETWORKS 41

3.4.1 Example CNN 44

3.5 FACE RECOGNITION 48

3.6 BACKGROUND 49

3.7 APPLICATIONS OF FACE RECOGNITION USING CNN 50

5 | P a g e

3.8 TENSORFLOW AND KERAS 51

3.9 RESEARCH SUMMARY 52

4 DESIGN  53

4.1 SYSTEM ARCHITECTURE 53

4.2 SEQUENCE DIAGRAM 54

4.3 DATABASE DESIGN 55

4.4 PROCESS DESIGN 56

4.5 MODEL DESIGN  57

4.6 USER INTERFACE DESIGN   59

4.7 DESIGN SUMMARY 62

5 IMPLEMENTATION 63

5.1 DEVELOPMENT ENVIRONMENT 64

5.2 IMAGE CLASSIFICATION AND MODEL PREPARATION 65

5.2.1 Understanding CNN’s with Keras 65

5.2.2 Understanding ImageNet 68

5.2.3 Image Manipulation 69

5.2.4 Saving and Loading the Model 72

5.2.5 Model Comparison 73

5.3 MACHINE LEARNING IN FLASK 76

5.3.1 Setting up Flask 77

5.3.2 Testing In insomnia 78

5.4 WORKING WITH A DATABASE 79

5.5 INTEGRATING MODEL WITH DATABASE APPLICATION 80

5.5.1 Integration Issues 80

5.5.2 Creating Templates and Routes 81

5.5.3 Adding Upload Prediction Functionality 82

5.5.4 Database integration 84

5.5.5 Adding Attendance 85

5.5.6 Adding Basic Image Capturing Functionality 86

5.6 MODEL FINETUNING 88

5.6.1 Retraining the model 89

5.6.2 Adding more Manipulations and Images 90

5.7 FINAL ATTENDANCE APP IN FLASK 91

5.7.1 Added Features 91

5.7.2 Issues that Arose 92

5.8 IMPLEMENTATION SUMMARY 92

6 TESTING 93

6.1 FUNCTIONAL TESTING 93

6 | P a g e

6.1.1 Links 94

6.1.2 Client/Server Communication 94

6.2 MODEL TESTING 94

6.3 USER TESTING 95

7 PROJECT MANAGEMENT 96

7.1 PROJECT MANAGEMENT TOOLS 96

7.2 DIFFICULTIES AND REFLEXION 98

8 CONCLUSION 99

8.1 SUMMARY OF CHAPTERS 99

8.2 FUTURE IMPROVEMENTS 100

8.3 PERSONAL TAKEAWAYS AND PROJECT ACHIEVEMENTS 100

9 BIBLIOGRAPHY 102

10 APPENDICES 106

10.1 APPENDIX A – SURVEY FOR REQUIREMENTS AND EXCEL ANSWERS 106

10.2 APPENDIX B – USER INTERFACE AND SYSTEM MODEL DESIGNS 106

10.3 APPENDIX C – CODE REPOSITORY 106

10.4 APPENDIX D – INTERIM PRESENTATIONS 107

10.5 APPENDIX E – MICROSOFT PLANNER 107

7 | P a g e

1 Introduction

‘With the development of deep learning, face recognition technology based on CNN

(Convolutional Neural Network) has become the main method adopted in the field of face

recognition.’ - Jie Wang and Zihao Li (2018)

Face recognition was once seen as an application of the distant future, but developments in

technology in the last 60 years have caused it to be used in our everyday lives. For instance,

Facebook used face recognition in their person-tagging system, and security systems have

adopted facial recognition like VisionAI to create more advanced security systems. These

systems can also be used for tracking down criminals using CCTV cameras. There have been

vast developments in face recognition, especially in its evolution from 2D to 3D techniques. The

first popular 2D technique was called eigenfaces, which used the angles from different points of

a face to create vectors that would be able to recognise if a face was or was not in a particular

picture. This was mainly used for front-facing photos. A 3D technique is where multiple images

are taken from the front and sides of the face to create a 3D model of a face model, which

could be then used for general or specific face detection.

A series of recent studies, including ‘Face recognition as a Biometric Application’(Petrescu,

2019), have indicated that deep learning techniques have become one of the fastest and most

efficient ways to create a face recognition system mainly involving Convolutional Neural

Networks (CNN). This research paper will discuss the architecture of CNN models and some

widely used models used in face recognition. These models will be shown in real-world

applications and how they improve different industries, including attendance systems for

companies. A research paper was written about how face recognition and how CNNs could be

used to create attendance systems. These have been implemented and documented in

research papers, including a smart attendance system(Kumar Chauhan & Pandey, 2018) that

was part of the inspiration for this application.

For this project, face recognition within attendance systems will be investigated. Through this

an application will be created to demonstrate how this will work. The central part of this project

will be implementing the recognition model and how it will be made and trained to develop an

accurate attendance system. Ways to improve this will be investigated, including creating

accurate predictions using a small dataset using image manipulation. An essential part of this

process will be researching how current image recognition models work and how elements of

8 | P a g e

them can be used or studied to aid in the implementation of this project. This research paper

aims to create a system that automatically gathers attendance while also looking into how

users feel about this type of technology.

The following research paper is structured as follows. Requirements analysis will discuss the

feasibility study, requirements modelling, user research and project plan. The research chapter

is a literature review on how machine learning and deep learning work and how this can be

used in face recognition applicators for attendance. The design chapter describes the system

architecture, model architecture and the user interface design for the proposed application.

The implementation chapter will describe the phases and how the components came together

for the final application. The testing chapter discusses the functional, model and user testing

undertaken for the application. The project management chapter will discuss how the project

was managed and what tools were used. The last chapter is the conclusion, which will

summarise the project and its achievements and future developments.

9 | P a g e

2 Requirements Analysis

This chapter aims to describe the requirements and feasibility of this application. The purpose

of gathering requirements is to understand what type of application is being implemented and

why it will be built. It identified each of the requirements needed from the start to the end of

the project. These can be gathered using various means and tend to be split into sections; the

sections of requirements gathering done in this chapter are requirements modelling, user

research and feasibility.

Requirements modelling details the functional and non-functional requirements for the

application. Functional requirements are product features that must be implemented within

the application for the user to accomplish tasks. Non-functional requirements are not needed

for the application to work but instead define how the system should perform. For example, a

functional requirement would be an alert sent to users after entering incorrect information. In

contrast, a non-functional requirement would be that that alert appeared immediately rather

than the user waiting a couple of seconds to see it. The user research section investigates what

users want from this application and identifies the target audience. It’s also carried out to

identify any issues users would have with the application. The feasibility section will define how

plausible it is to get this system running and the limitations associated with the project. To end

this analysis, a test plan and a project plan for the developer will be discussed.

2.1 Requirements Investigation into Existing Applications

There are various different applications for face recognition available nowadays. This is because

face recognition research has expanded over the past ten or so years. Many researchers and

developers are finding new ways to use this technology to their advantage, and one of those is

to create an automated attendance system using face recognition. There are many attendance

systems made either for research papers or for industry, and many different methods are used

with Convolutional Neural Networks being one of the top ones at it have extremely high

accuracy.

To create a robust and accurate face recognition application, it is important to look at other

existing systems as it can give insight into how other people have implemented similar

applications. This can also show the problems that have arisen with certain methods. As similar

applications have been created before it is important to look at them to see how they could be

improved or what models have been used to create the more accurate applications. Through

10 | P a g e

this research I decided to create a neural network for my face recognition system as I realised

other methods or pre-existing models weren’t as accurate as I wanted. Many of the

applications that were looked are small and were used in research papers. These mainly took a

photo of a class to put through a recognition model whereas I wanted it to work through a

frontend application. Along with this the developer discovered that the application used for

criminal investigation purposes are similar to those used for attendance. Below is a brief

explanation of monitoring systems made for criminal investigations and attendance application.

In a face recognition paper for showing how face recognition can help, Virgil Petrescu

mentioned how face recognition can help criminal investigations as these algorithms can

provide additional information that a person is unable to decipher (Petrescu 2019). Advances in

face recognition technology can allow for CCTV security systems to be used to identify faces at

a crime scene using 3D face recognition. In addition to this a recent study was carried to detect

street crime using a face recognition model called VGG-19, to see how accurate this system

would be and how it would help in the prevention of street crime. The system ended up being

81% accurate and had 0.025 frames per second detection time.

In 2012 Baloch et al. discussed their method of implementing this system by using a hybrid

approach involving neural networks and other methods of face recognition. This system proved

to be somewhat accurate but there were issues brought up with people with facial hair or veils

being harder to identify. On the other hand, this system is very easy to set up and was

computationally inexpensive. Along with this a more recent study conducted by Chauhan and

Pandey discusses using purely CNN which is a type of neural network for their system. The

results of this system were very positive and allowed for quick and efficient attendance taking,

the test set had 100% accuracy when all students were facing the camera. According to

Chauhan and Pandey (2018) ‘face recognition-based approach is found to be the best method

for smart attendance system’.

An example of a commercial attendance system currently using face recognition is AIndra labs

smart attendance system. This system takes pictures of a classroom and stores the information

on a server.

The system will work on face recognition where each student in the class will be photographed,

and their details will be stored in a server. The teacher can then record the attendance by just

clicking some pictures of the classroom. The system will recognize the faces and verify the

11 | P a g e

presence or absence of each student. (“Face Recognition attendance system for schools and

...”) This smart attendance system allows an admin to monitor the attendance of a full region

on a smartphone.

The benefits of this system are:

• Efficient and saves time in a classroom

• Avoids errors from manual attendance

• Students can’t fake attendance

• Becomes more accurate over time as it uses a machine learning model

This system is shown to be a very good one, but the issue is that it doesn’t clearly show what

technologies are used in the creation of the application. This makes it tough to find out how

they went about making their system. Overall, this is a good application to look at to pick out

features that would be useful. Features including saving the students information to a server

and having a manual system where the teacher can verify the attendance manually. The

research papers that were looked were very insightful and have given great ideas on features to

add and others that will not be used. The developer didn’t like how the images were taken and

try to get close to but it's better to look at research papers and open-source applications to

understand how to go about creating this from the bottom up.

2.2 Requirements Modelling

This section details all the requirements that would be needed for the ideal application. It is

split between user requirements, technical requirements, functional requirements, and non-

functional requirements. All of these are based on what I've read in other research projects

about face recognition along with the aforementioned web application.

The user requirements are based on what existing applications have and what users of those

applications liked. This application will not have many user requirements as most user

requirements apply to the front end and this is primarily a recognition model. There will be a

small user interface for very basic uses. The user should be able to view the attendance within

the application and be able to simply upload or take a picture of themselves for the application.

12 | P a g e

2.2.1 Technical Requirements

Technical requirements refer to the technical issues that must be implemented to create the

desired application. This includes the performance, availability, and reliability. In many software

projects it refers to the programming languages that will be used to create the application and

the standards or required features it requires.

The technical requirements for this application are as follows:

• High quality camera for accurate detection
• Efficient python system
• Anaconda with environment set up for the project
• Flask frontend
• NoSQL database or SQL database

2.2.2 Functional Requirements

Functional requirements are essential for a working application. They define the basic system

behaviour that should occur when doing specific tasks. These requirements can be rated by

priority as some items are more necessary than other, some will be high priority which will be

counted as essential for the final product. Medium priority features are not essential for the

user to use the application and may only be added done the line. Though most would make

using the application better for the user. Low priority are items that would be ideal for the

application to have but in the timeframe will most likely not get implemented and are not

necessary for a prototype.

High Priority

• Camera to detect face

• Algorithm that first takes snapshots of face to be fed to model.

• Camera accurately recognises face

• Timestamp and unique id added to database

• If camera detects new face – added to the attendance report with new id

• Model can be constantly trained

• Images can be manually inputted to test model

• Model can manipulate images to help train model

• Model recognised faces fast and efficiently

13 | P a g e

Medium Priority

• Model can recognise multiple faces in on snapshot

• Front end app – ability to view list of people in attendance

• If unknown person a warning or alert is sent to user

• Application removes person once they leave room

• Alert sent when new face is detected

• New person can take a picture with their name and add to the database as new user

Low Priority

• Auto deleting of images once not needed

• Being able to delete images as they predict a face.

• Admin dashboard to edit attendance

• Live feed detecting attendance

2.2.3 Non-Functional Requirements

The following requirements are based hoe well a system behaves and if there are limits on its

functionality. These requirements will not affect the base functionality of the application and

are not needed for it to work. These include how quick the application responds to actions and

how easy it is to use. These are listed below

• User-Friendly interface

• Get prediction quickly.

• Fast load time between pages

• Works on multiple browsers

• Doesn’t slow down after multiple attendances are taken

• Easy for users to navigate

In future iterations of this applications more of these requirements would be more necessary as

it would be a user-focused application in its final iteration. This is because of the current

timeframe to complete this project. The primary focus will be on the model for the application

rather than the user interface.

14 | P a g e

2.3 User research and personas

For the user research portion of requirements research on various types of users was

undertaken during the requirements gathering phase of this project. Firstly, a survey was

carried out. After the survey personas were created. These are characters created based on the

ideal customer or user of the application. Personas can be created by talking to users and the

survey that is conducted will aid in creating a persona. This will also be made using what the

two main users of the application would be based on the existing applications section.

2.3.1 Survey

During the requirements gathering portion of this project, a survey was held with a small focus-

group, to ascertain if they had any security concerns with the product. In this survey the age

group that answered it were all between the ages of 20 and 35, the majority being college

students in my course. Around 50% of the responses knew about face recognition and its

applications whereas the other half were unsure about how these applications worked. Due to

this the developer felt that the survey got a good variant of opinions due to the spread of ages

and knowledge. The survey can be found along with the excel of the answers in Appendix A.

Figure 1 Ages of people taking the survey

To gain an understanding of how much the people taking the survey knew about face

recognition the question shown in figure 2 was asked. This showed that about 50% of people

knew a lot about the technology and the other half knew a little bit or nothing at all. It’s

important to know how knowledgeable the group was and to get others to take the survey if

15 | P a g e

the answers weren’t diverse. As the developer wanted to make sure there was people

answering hat didn’t know a lot a lot and people that did.

Figure 2 second survey Q

The image in figure 3 shows the question that was asked to get real world reference for what

people think about face recognition technologies, As can be seen a third are concerned about

the technologies and over 40% say it depends. Over 40% answered ‘depends’, for this the

following question asked to elaborate on their answer as depends on can be taken as vague

without context. From the extra information in the following question, it can be inferred that

up to 70% of people surveyed feel it can be used for malicious reasons. Below is a list of the

most common concerns from this question.

• Concerned about apps using the images for tracking purposes (by government or other

organizations)

• Don’t like the idea of it being necessary and would prefer it as an optional feature.

• The possibility of it being used in security cameras in future, feeling of no privacy.

• A lot of the participants state that it really depends on the morals around it and laws

would have to come in to stop it being abused.

16 | P a g e

Figure 3 survey question 3

The following questions shown in figure 4 – 6 are about how comfortable people are with

automatic attendance. These were asked from a scale of 1-5, 1 being very comfortable and 5

being very uncomfortable. The questions in figure 4 and 5 were the same expect for in figure 4

the files would not be kept online and in figure 5, it asking about if the footage r images were

kept on file. There is a clear difference in how comfortable someone is when the information is

being kept and when the information is being deleted immediately. Over 60% of the group

would be at least slightly comfortable with it if the footage were being deleted. This makes a

large shift to 70% approx. not feeling comfortable when the footage is being kept. The

information gathered here would be important for the application and will be considered

during the implementation and design stages.

Figure 4 Question on comfort - info not kept of file

17 | P a g e

Figure 5 Question on comfort - info kept of file

The question in figure 7 concentrated on the general monitoring that would occur if it were a

live video feed taking attendance. The overwhelming majority were extremely uncomfortable

with this as well and in a question to elaborate on this people felt that it would be disconcerting

to have a camera watching them all the time even if it wasn’t recording.

Figure 6 comfort being monitored

18 | P a g e

Figure 7 Explanation for following section

In figure 7 there is a description, this is the scenario in which the following questions are related

to. The description details what the application would be and that there would be a live

attendance feed. The graph in figure 8 shows peoples hesitance with wanting this application to

be used and that they would not use it themselves. Other extra comments mentioned that they

do not see the use of it and feel like it is and unnecessary application as people generally don’t

need to know where other people are. The comments were mentioned in the following

question to gain perspective on their answer.

Figure 8 Pie chart

The image in figure 9 shows that people would be uncomfortable with having a camera

connected to this application in the room. this is mainly due to security concerns around the

app. If the wrong person was looking at it, or if the feed was being saved and their faces were

kept on file. Some of the group also stated in an answer that it could affect their attendance

badly if there was a camera in the room.

The final question asked was concerning security and any other concerns people have with this

application. The main concerns people had were:

19 | P a g e

• Footage being misused by people stalking a person or the info getting into the wrong

hands.

• The camera can cause undue stress on a class which could affect productivity and

concentration.

• Location not being private anymore.

• Used for malicious purposes

• Identity theft

• Big concern was people feel that it's not necessary.

Figure 9 Question on application

2.3.2 User Personas

Personas are created as ideal or possible users of the software application. There are two

different main types of users of this application: An employer or college lecturer and a student

or worker. The lecturer would be the one using the admin side and keeping the attendance part

of the system. The student would be using it by uploading or taking a snapshot of themselves

for the application.

20 | P a g e

Figure 10 College Lecturer Persona

Figure 11 Lecturer Persona

21 | P a g e

 The lecturer wants to be able to monitor attendance easier as they teach in large halls, they

would be very interested in making attendance more accurate and having an application that

does it quicker. This application would be used as the beginning of class while the lecturer is

preparing the material. Each student would be told to take a snapshot of themselves. After

class then the lecturer would download the attendance and if any new person or student that

wasn’t on the original attendance list uploaded their image it would be marked, and the

lecturer would contact that student or admissions about training the dataset with the new

person. On this side of the application the college lecturer may find it very useful as an accurate

way to take attendance. This is backed up by the growing popularity of attendance systems

used in classrooms.

Figure 12 Student Persona

22 | P a g e

Figure 13 Student Persona

The second persona is based on a student that would using the application on the user side

rather than the admin side. They would either upload their image or would take a screen

capture of themselves. In another version of this application the application will take

attendance from a live video feed. According to the survey undertaken as part of this project,

the student is fine with the attendance taking as long as the images aren’t saved online and also

have many security concerns about what happens with the data. This information is taken from

what was answered by the above survey. According to that survey about 50% of students

wouldn’t be a fan of this if the data is being stored. Even though there are problems this

application would still come in handy for the student.

2.3.3 Use Case Diagrams

In figure 14 there is a simple use case diagram of what the desired front-end application will be

able to do. The user and admin will have a few abilities and this app will be quite simplistic.

23 | P a g e

The user will be able to upload images, if they are a new student, they will be asked to name

their file their full name. Once they are on file, they can either upload an image or capture their

face using the webcam and they will be able to view the current attendance. The admin of the

system will have the ability to upload new images for training as well as retraining the model.

Figure 14 use case diagram

 In figure 15 is the basic system model of how the model will work connected to a database.

This model does not contain the front-end application. This is because the front end is

described and shown in the design chapter. Below is what will happen when a person uploads

or takes a snapshot of their face for the model and it successfully sends to the user.

If this fails, the user will be alerted that the file was not uploaded correctly. If the prediction

itself fails as the user can be an unknown there is message sent out telling the user to add

themselves to the system.

24 | P a g e

Figure 15 System Model

2.4 Feasibility Study

The main issues in terms of the feasibility of this project are; If the technologies work in the way

they are meant to, and participants/users may have security concerns. The technologies in the

following section will be used in this application, to create the desired application. The survey

completed during requirements gathering highlighted additional security concerns within the

project, and not all of these concerns can be effectively addressed within the scope of this

project

2.4.1 Technologies

The technologies chosen for this project are Python, Flask and SQL. The chosen language was

Python because it is very popular for the creating machine learning models and due to this has

a lot of support and well-developed libraries to aid in the production of this application:

Python

The entire project will be coded using the python coding language. This was chosen as machine

learning models are made very often using python. It offers readable and concise code allowing

developers to concentrate on creating a model instead of needed to focus on the technical

25 | P a g e

issues with the language. It has also got a lot of libraries that are very helpful in creating very

accurate and fast prediction models. Including Pandas, NumPy and scikit-learn. Using python

folders can be created and files deleted easily within a method by importing the os module.

This is useful as the participants of the survey mentioned they wouldn’t want images saved.

This gives the ability to delete the images once they have made a prediction. TensorFlow and

Keras, Open CV and Flask will be the main modules used within Python.

Tensor flow or Keras

Keras is a deep learning API that runs on top of TensorFlow, which is a machine learning

platform. These are used together to create API’s for building and testing models like neural

network models. Keras has a module for creating a sequential model which will be useful in

creating the facial recognition model.

Open CV

Open-Source Computer Vision Library (OpenCV) is a computer vision and machine learning

software library which can perform task such as face detection and image/video processing. It

was developed by Intel and can be used in both Python and C++. It is used to process images

and can also be used with the webcam in the browser. OpenCV can also save images to a

specific location and edit the size of images so they fit the specific model.

Flask

Flask is a python web framework and using this framework the developer will make the API for

the python model. It was created by Armin Ronacher, who runs an international organization of

known as Pocco. The Flask template engine is built on the Werkzeug WSGI (Web Server

Gateway Interface) toolkit and the Jinja2 template engine.

The WSGI is a standard for Python web application development and is a standard for

developing interfaces between the web server and the web applications. Werkzeug is a WSGI

toolkit, which implements requests, response objects, and other utility functions. This allows

you to construct a web framework on top of it.

Flask has many extensions that can be imported to support various software. One that will be

used within this application is an extension with will support SQLAlchemy this allows to use of

26 | P a g e

an ORM within the application and connect to an SQL database. During development, we will

use a SQLite database and it will port over to SQL for production.

SQL and SQLite

SQLite will be used as the development database and SQL will be used at production level as

SQLite is not supported at production level. SQL is a query language that is used with databases.

This can work well within Flask and therefore will be used for this project.

2.4.2 The Benefits and Issues of the Application

For the feasibility of this application it’s important to look at the benefits and the issues that are

within it. These could affect the creation of the project or the ability to implement all necessary

components in the time given. In this specific project the issues are more prevalent than the

benefits as this is an invasive type of project. This was shown in the survey as people don’t see

the need or don’t trust the application to be used in an ethical way.

The benefits of this is that the application can be used to speed up taking attendance and there

would be no need for manual attendance. It removes the human error from taking manual

attendance. This system can also help with being able to know who arrives exactly on time as

timestamps can be checked.

In the period given and the datasets available may not allow for an accurate model to be

created. As accurate models become more accurate over time with extensive testing and usage.

There are ways to limit this issue but as there is a time constraint it depends on how well these

solutions work. Another issue with datasets is the diversity of faces within them as you need a

diverse range of expressions and people from different areas to guarantee the model works for

everyone. A continuation from this if people will allow their faces to be used in the application

as training images, this raises security and privacy concerns. Images used for training don’t tend

to be deleted as training is done continuously and the best way to improve training is to

increase the image set size.

Security concerns that were raised in the survey may make it hard to use a webcam or live feed

for this project. A live feed would be used down the line for proposed application and capturing

of the face for the current planned prototype. This issue is large and nuanced and may cause

discomfort around students.

27 | P a g e

One of the biggest issues that could affect feasibility and the ability create this application is

that the front-end user interface won’t connect properly to the model to show the user the

necessary information i.e. the attendance and allow the user to download attendance report.

2.5 Project Plan

The development of this project was done using agile. This methodology is non-linear and

allows for an iterative approach to creating a project. Instead of having to have all the design

done in one iteration it can be changed while the project is being implemented. This suits the

type of project being created as face recognition models need to be constantly trained and

tweaked. Using Microsoft Planner, a digital Kanban was used which would be accessible to the

supervisor at any time. This consisted of five columns To Do, Doing, Complete, Postponed and

Stopped (No longer necessary). Each column holds a list of cards which represents a task that

will need to be completed. Each task can be labelled with a due date and an importance. A

document or link can be attached to these to, to be able to see the progress and for the

supervisor to look at. Once a task on Microsoft Planner is completed it can be marked done and

then it is added to the completed section.

The project will be Split into the following phases:

1. Understanding and comparing CNN models

2. Chosen model training

3. Connecting model to Flask application

4. Connecting database to Flask

5. Creating an attendance application

6. Finetuning model

7. Final application in Flask

8. Functionality and user testing

Figure 16 Microsoft planner

28 | P a g e

As Microsoft Planner allowed for due dates to be added and has its own interface for collating

all the files and seeing when items are due it was a handy tool for everything to be accessible in

one place. This was also handy as all of the documents were available through word online so

they could be stored easily here. Along with this the developer used a journal on OneNote to

keep notes while researching and coding as it can be kept in an organised manner with

different sections and pages. Having all deadlines and tasks organised allowed for smooth

project management

Figure 17 Calendar in Microsoft planner

2.6 Test Plan

The testing of this application will have multiple iterations as accuracy of this model is a

necessity. These iterations will be to retrain the model continuously through the creation of the

application. Therefore, the developer is planning to do some testing within as many sprints as

possible. The preliminary model test layout is listed as follows:

1. For testing this application, the developer will need to collate images from a set of

people to test on.

2. An image will be uploaded or captured within the application.

29 | P a g e

3. Timestamps will be printed out on the console and recorded to test how long it takes

the recogniser to identify the face and insert it into the database.

4. The accuracy will be checked by having people that aren’t in the database use the

application and see if it correctly identifies them as a new/ unknown person.

5. After each round of evaluating the accuracy will be recorded and the model and initial

dataset revisited.

There will also be a failure test to check what happens if a person captures an image containing

no face to if the uploaded image doesn’t contain a face. This will happen similarly to the layout

above but instead of a prediction being given a message is printed saying that the image is not a

face and will be deleted.

After these tests user testing will be run on the application, this will be to see if users like the

layout of the site and if it is user friendly. In this testing there will also be a survey on what the

users think of facial recognition models and if they would use this application.

2.7 Requirements Summary

This chapter provided the developer with a better understanding of our target market and what

features are the best to implement so this model and application will function together. It also

helped determine the functional and non-functional requirements for the web application. This

requirements chapter has aided in defining exactly what needed to be implemented in the

project.

The study of similar models and applications gave us a view on what features were used and

what we needed to do to create our application. The survey aided in gaining an understanding

of the users feelings towards this application. In the survey the mention of security and privacy

was quite prevalent so that will be looked into while implementing the project and the

feasibility section shows what will be used and the issues that may arise during development.

30 | P a g e

3 Research

The focus of this chapter is to investigate machine learning and deep learning and how it works

with face recognition. From this analysis a lot of knowledge on how the inner working of these

methods should be gained. There will be in depth analysis of machine learning types, there are

three main types known as supervised, unsupervised and reinforcement learning. Once this is

complete neural networks and deep learning will be investigated and why they are used more

than machine learning methods in face recognition. Then how attendance systems can be

created using these methods will be investigated followed by research into a popular library for

creating deep learning models in Python.

3.1 Machine Learning

Machine learning can be used in many applications and its growing popularity is evident as a lot

of applications and companies are making use of machine learning technology. Machine

learning is a field within AI. It’s known for giving computers the ability to learn without explicitly

being programmed. There are three main subcategories of machine learning: supervised

learning, unsupervised learning, and reinforcement learning.

3.1.1 Supervised learning

Supervised machine learning requires using labelled datasets to accurately train the machine

learning algorithms to predict outcomes. It is also used to classify data accurately. Many

companies use this as it is a very accurate form of machine learning.

This dataset used will include the inputs and their corresponding outputs so that the model can

learn which the correct answers are over time. This is done through training and testing the

model; the dataset is split into a training and test set. The model can then be trained on a

certain amount of the dataset and tested on the test set. The more extensive and varied a

dataset is, the better it is for supervised learning. A small dataset may only lead to accuracy for

specific inputs and a significant error for others. The loss function is used to measure the

accuracy of the chosen algorithm, adjusting until the error has been reduced as much as

possible (IBM Cloud Education, 2020). A loss function measures how far an estimated value is

from its actual value. The two main types of supervised learning problems are known as

classification and regression.

31 | P a g e

Classification

This type uses an algorithm to classify test data into specific categories. It recognizes specific

units within the dataset and attempts to draw some conclusions on how those units should be

labelled or defined. Decision trees and support vector machines (SVM) are popular classifiers

that are know for creating accurate classification algorithms.

An SVM is used in classification problems. In this algorithm each data item is plotted in n-

dimensional space, ‘n’ being the number of features. Each feature corresponds to the value of a

coordinate. Classification is performed by finding the hyper-plane that clearly classifies the data

items. This can be seen in the below figure. Hyperplanes are decision boundaries that aid in

classification. The dimension of the hyperplane can change depending on the number of

features. The figure below shows if the number of inputted features is 2 but if there were 3

features then it would become a two-dimensional plane instead of a line.

Figure 18 Possible hyperplanes (Gandhi, 2018).

The aim is to find the hyperplane with the biggest margin between each set of data points or

features. The larger the margin allows for future features to be classified with high confidence.

If there is only a small margin between the two classes, the model may not be very accurate.

The support vectors within this model are the data items that fall close to the hyperplane, and

they will be used to find the optimal margin for the classifier as shown in figure 19.

32 | P a g e

Another type of classification is a decision tree which looks like a flowchart-type tree structure.

A decision tree is made up of nodes, the root node is the topmost node in the decision tree. It

learns to partition on the basis of the attribute value. For example, if the decision node states 'l

= 10', the two leaf nodes extending from this will represent yes and no and if in this case 'l = 10',

the tree will partition at that leaf node. A decision will continue doing recursive partitioning

which helps decision making.

Figure 19 Example of decision tree

Above is an example of what a decision tree looks like when it is making decisions this was

made using a plotting library in python and the decision tree is deciding whether to buy a pizza

from one company or another. This was done using a pre-trained model that the developer

made.

Regression

Regression models are used statistical method for determining the relationship between

dependent and independent variables. It is widely used to produce sales and stock forecasts,

such as those for a company's sales revenue. Popular regression algorithms include linear

regression and logistical regression.

33 | P a g e

Linear regression is extremely popular and widely used to create regression algorithms and is

also one of the simplest regression algorithms. Due to this they have many real-world

applications in predicting house prices or future prices of stock in the stock market.

For example, lets presume that house size is the only determinant of house price. If we were to

plot house size which is the ‘predictor’ variable or input as a function of house price (the

outcome or output variable). From the assumption made there may be a linear relationship as

shown in figure 20.

Figure 20 Linear regression Example - line graph

3.1.2 Unsupervised learning

For unsupervised models, the research must have at hand a dataset with some observations or

pre trained data without the requirement of getting the labels/classes of the observations.

Unsupervised learning studies how systems can get a function to explain a hidden structure

from unlabelled data. The system doesn’t predict the correct output, but instead, it explores

the info and may draw inferences from datasets to explain hidden structures from unlabelled

data. Unsupervised models can be grouped into clustering and association models.

Clustering

 A clustering problem is where you wish to unveil the inherent groupings within the data, like

grouping animals supporting some similar characteristics/features e.g., number of legs.

34 | P a g e

K-Means finds groups in data and the number of groups is represented by K. It is an iterative

procedure where each item of data is assigned to a group based on the feature similarity. The

way the algorithm starts is with an estimate of K centroids, these are randomly selected items

from the dataset. The algorithm then iterates between assigning data items and updating the

centroids. The graph in figure 21 shows simple clustering used in K means, each black dot

represents a centroid, these centroids and clusters will change according to the testing.

Figure 21 Graph of K-means clustering https://media.geeksforgeeks.org/wp-content/uploads/20190812011831/Screenshot-
2019-08-12-at-1.09.42-AM.png

Each item of data is assigned to its closet centroid based on Euclidean distance(the length of a

line segment between two points). The Cosine method can also be used for this algorithm

which is measured by getting the cosine of the angle between two vector and seeing if they

point in a relatively similar direction. Whichever of these give the best results will be used, and

this can depend on the model or data itself. Centroids are updated by taking the mean of all

items of data assigned to a particular cluster.

The elbow method is often used to calculate the value of K, shown in figure 22. In this method

K-means clustering will be run for a range of values, depending on what seems best for your

dataset e.g., K=1 to 10. Then the Sum of Squared Error (SSE) is calculated. This calculated as the

mean distance between the cluster centroid and data points in that cluster. SSE is calculated as

the mean distance between data points and their cluster centroid.

35 | P a g e

Figure 22 elbow function shown in line graph (The elbow method, 2022)

Association

 An association rule learning is where you wish to get association rules like people who buy X

also tend to shop for Y.

PCA as mentioned in a previous section can be used with Eigenfaces for feature extraction by

using a dimensionality reduction technique. Within this technique, it tries to preserve the

essential parts which tend to have more variation and remove the non-essential parts with

fewer variations. The dimensions are features that represent the data, each pixel in an image

are the dimensions or features that altogether represent an image.

There can also be semi- supervised machine learning algorithms, these just use a mixture of

labelled and unlabelled data for training.

3.1.3 Reinforcement learning

Reinforcement machine learning is about giving an ’award’ to the algorithm when it makes a

correct prediction. These also use estimated errors if they large as a penalty.

The most important aspects of reinforcement learning are trial error search and delayed

reward. This model family enables the automatic determination of the optimal behaviour inside

a certain scenario in order to optimize the intended performance. For the model to learn which

behaviour is optimal, it requires reward feedback, which is referred to as "the reinforcement

signal."

36 | P a g e

Overall, each method can be highly effective while used within a face recognition system.

Although through research it is known that supervised methods are the most accurate

especially with a smaller dataset. Due to this the developer decided to use a supervised method

for this application. The next section goes into detail about this method which is neural

networks and then will go on to explain convolutional neural networks as that is the specific

model to be used in this application.

3.2 Neural Networks

Neural networks and more specifically, artificial neural networks (ANNs) mimic the human brain

through a set of algorithms. A neural network is made up of four components: inputs, weights,

a bias or threshold, and an output. Like linear regression, which is mentioned above as a

supervised learning method that’s similar to neural networks, the algebraic formula would look

something like this:

Figure 23 Neural network algorithm

Neural network models are multiple linear regression models. Their algorithms are very similar

too and the main change it that most neural networks have at least one hidden layer, but linear

regression only has its single layer so therefore the algorithm is less complex. This does mean

that linear regression is more useful for models that don’t need any extra computation and only

need the inputs and outputs like the example to the left of figure 24. To show how similar they

are they are drawn beside the other in figure 24. Weights can also be added to regression

models as different factors may have different importance in the example above on one factor

was used so no weights were needed.

37 | P a g e

.

Figure 24 Linear regression vs neural network

3.2.1 Activation Functions

Within each hidden layer of a neural network there is an activation function, these can also be

used in classification models that were described in the previous section. Though they are most

known to be used in neural networks. An activation function is used to get the output of a node

and is also known as a transfer function. It determines whether the output is a yes or a no and

then maps the values between 0 and 1. There are linear activation function and non-linear

activation functions. Linear activation functions don’t add complexity and is similar to the linear

regression model. Non-linear functions are the most popular as they help the model to adapt

and improve and differentiate between the output. The activation functions that will be looked

at are Sigmoid, SoftMax and ReLU. Multiple types of activation functions can be used within a

neural network depending on the layer.

Sigmoid: This function simply takes a real value as input and outputs another value between 1

and 0. This is good for a classifier and has a smooth gradient. The output of the activation

function is always going to be in range (0,1) compared to (-inf, inf) of linear function. So

we have our activations bound in a range. Sigmoid is used at the last layer of a neural

network as it is good for predicting probabilities with two outcomes.

SoftMax: This activation function is also ,mainly used in the last layer of a neural network and is

a more generalized logistic activation function for multi-class classification. Meaning that it can

be used for solving a classification problem involving two or more classes.

38 | P a g e

ReLU: This function is mainly used for the hidden layers of a network and as it is less

computationally expensive than sigmoid or SoftMax so can be used for more layers. It shouldn’t

be used for the output value as it can blow up the activation because every value under 0

becomes 0 and this is an issue because the range of ReLU is [0,infinity].

3.2.2 Real World ANN Example

First you can pose a question like whether you should order take away for dinner. The

predicted outcome will if you should or shouldn't order takeaway. For this example, assume

that there are three main factors that influence your choice:

Saves time (Yes: 1; No: 0)

Have a healthy meal (Yes: 1; No: 0)

Saves money (Yes: 1; No: 0)

Then, let’s give each of the above factors a value either 1 or 0 for simplicity purposes:

- X1 = 1

- X2 = 0

- X3 = 0

 Factors 1 0

X1 Saves time yes

X2 Have a healthy meal no

X3 Saves money no

This defines it as a perceptron which is a binary classifier. Most real-world issues are non-linear

a binary classifier doesn’t seem like the most useful. Therefore, values are required to reduce

how much influence any single input can have on the outcome. This leads to the next step

which is to add weights depending on how important each factor is in the overall equation as

39 | P a g e

one factor can be seen as more important than another. Below are the allocated weights based

on the above factors:

- W1 = 5 – weight for X1

- W2 = 2 – weight for X2

- W3 = 3 – weight for X3

Finally, we will also assume a bias of -5 and therefore a threshold of 5. All of the values can now

be inserted into the formula shown in figure 25.

Figure 25 Neural network algorithm

Using the sigmoid activation function, the output can now be calculated and this will be our

choice:

Figure 26 Sigmoid Activation Function (Kishan Maladkar, 2018)

The answer is 2 and since it is above 0 that means we will order takeaway.

If the output of any particular node exceeds the given threshold value, that node is activated

and begins transferring data to the network's next tier. Otherwise, no data is sent to the next

network layer. As neural networks feature numerous "hidden" layers as part of deep learning

algorithms, envision the above procedure being repeated multiple times for a single decision.

Each hidden layer has its own activation function, which can potentially convey information

from one layer to the next. Once all of the hidden layer outputs have been generated, they are

used as inputs to calculate the neural network's final output. When it has hidden layers, it is a

deep neural network which will be described in the next section.

40 | P a g e

3.3 Deep Learning

Deep learning is a subset of machine learning and works in a similar way to machine learning,

but it has a few additional features. Machine learning models improve over time, but they still

require supervision. Whereas deep learning models can detect if an algorithm can assess

whether a prediction is correct using its own neural network, as was described in the previous

section. The deep in deep learning refers to the depth of layers in a neural network, a neural

network can be referred to as deep if it has more than three layers including the input layer and

output layer. This is shown in figure 27.

Figure 27 Deep neural network (IBM Cloud Education, 2020)

Most deep neural networks are feed-forward, this means that they flow only from input to

output. However, you can also train your model through backpropagation; that is, move in

opposite direction from output to input. Backpropagation is a training algorithm that has two

steps first the values are fed forward and then the error is calculated, and it propagates (sends)

the error back to the previous layers. Feedforward is part of back propagation, but it can also

be used by itself. Having the error sent back and pushed forward again in batches will increase

the accuracy overall.

As mentioned in the previous section neural networks are used in face recognition. The first

convolutional neural networks were researched and used by Fukushima (1980). Fukushima took

of approach of seeing if one could create a neural network model with the same ability of

41 | P a g e

pattern recognition as the human brain, this network was self-organised. Pattern recognition is

very integral in many face-recognition models from the traditional to the deep learning

methods.  

3.4 Convolutional Neural Networks

As mentioned above CNN is a type of neural network model and is a supervised learning

technique which is a technique that uses labelled data. Regarding deep learning this means is

has a set of inputs and corresponding outputs (𝑥𝑡, 𝑦𝑡)~𝜌 (Alom et al., 2018). The neural

network model's appeal stems in part from its remarkable achievements on face

recognition in uncontrolled environments. (Guosheng Hu et al., 2015). Along with this

CNN’s are very powerful at analysing images and getting meaningful information from

them with a very high efficiency. This is demonstrated by an example by Kulkarni and

Harnoorkar (2020) that stated that the most basic of CNN models’ accuracy is greater

than 97%. 

The basic CNN design has undergone numerous revisions, and other approaches have arisen

over time. According to this author, the two main components of a CNN architecture are

feature extraction, which is a convolutional layer that separates and identifies various features

of an image, and a fully connected layer that uses the output of the convolution process to

predict the class of the image based on the features extracted in previous stages (Gurucharan,

2020). CNNs are quite powerful for analysing and extracting useful information from images.  

Typically, a CNN architecture looks like the image shown below in figure 28. This structure

contains convolutional, pooling, activation functions (ReLU & SoftMax) and fully connected

layers as detailed by Coskun et al. (2017). There can be multiple of each layer especially the

convolutional layer and the pooling layer. As shown in figure 23 you can see multiple pooling

and convolutional layers. Later in this section each layer will be briefly described followed by an

example explaining how it all works together.

42 | P a g e

Figure 28 Basic Graph of CNN Architecture. (2019, August). [Illustration]. Research Gate.
https://www.researchgate.net/publication/335086346_Blind_Channel_Identification_Aided_Generalized_Automatic_Modulation_Recognition_
Based_on_Deep_Learning

A computer doesn’t see and almost automatically know what an image is like humans, it reads

it as a collection of matrices. Depending on if the image is in colour it will be a 3D array with

RGB channels ranging from 0 to 255 if we pass black and white image, then we will get a 2D

array with binary values. This is demonstrated in the image below.

Figure 29 Image of a 5 with its binary map

The Convolution Layer 

This layer handles most of the computational work according to M. Coşkun et al (2017). The

convolution layer is used to extract features from the data that has been inputted, which

happens to be a picture. Convolution maintains the spatial link between pixels by learning

image attributes from small squares of the inputted image. A set of learnable neurons is used to

43 | P a g e

convolute the input image. As a result of this there will be an activation map or a feature map

in the outputted picture/image, the next convolutional layer receives this image as input data. 

Figure 30 Convolution layer - feature map

Pooling Layer  

In most architectures the pooling layer is the next layer after the convolutional layer. The main

aim of this layer is to reduce the size of the feature map from the previous layer to lower the

computational costs. It independently works on each feature map reducing the connections

between layers (Gurucharan, 2020).  Depending on the method, multiple types of Pooling

operations that can be used. For instance, max pooling extracts only the maximum activation

and average pooling weighs down the activation by combining the nonmaximal activations

(Passricha & Aggarwal, 2019).

Activation Functions 

The main feature of activation functions is mapping the input to the output in every kind of

neural network. To compute the input value the weighted summation of the neuron input and

its bias is used by creating the related output, the activation function can select whether to fire

a neuron in response to a certain input (Alzubaidi et al., 2021).  

One of the most common types of activation functions is ReLU. This activation function has

been used in many applications of CNN, one of those being M. Coşkun et al (2017). 

Furthermore, it is a non-linear operation that includes units that use a rectifier. It is an element-

wise operation, which means it is applied per pixel and replaces all negative values in the

44 | P a g e

feature map with zero. To understand how the ReLU works, we suppose that there is a neuron

input supplied as x, and that the rectifier is defined as the following equation.

f(x)ReLU=max(0,x)

Fully Connected Layer 

This layer specifies that all filters in the preceding layer are linked to all filters in the layer that

follows. This layer is typically found at the end of any CNN architecture. Using the Fully

Connected method, each neuron in this layer is connected to all neurons in the previous layer.

This serves as the CNN classifier and employs the typical multiple-layer perceptron neural

network approach. The previous pooling or convolutional layer provides input to the Fully

Connected layer. This input is a vector that is formed after flattening the feature maps.

(Alzubaidi et al., 2021). 

As described above there are many layers that can be used within a CNN. There are also many

reasons as to why you pick one layer over another layer in a certain position and in many neural

networks have multiples of the same layer to maximise accuracy. The layers of a CNN are

arranged so that first detect lines and curves and simple patterns and as the layers progress

they can detect more complex patterns e.g. faces and objects. Below is an example of how

these layers work together to detect a number. The section above described the layers in depth

and the developer will use this to explain a network in easier language.

3.4.1 Example CNN

The way the CNN will work in this example is as follows:

• An image is inputted – in this case of the number ‘5’

• This image will be converted to an array

• A convolution layer.

• A max pooling layer.

• repeat both of the above layers

• Flatten the layers

• Fully Connected layers

• Get our output

45 | P a g e

So as was mentioned the image is inputted and converted to an array this is seen in the figure

below.

Figure 31 Image of a 5 with its binary map

Firstly, the convolution layer is needed to create an activation map to do this it performs a dot

product between two matrices.

• Matrix 1 is a set of learnable parameters which will be referred to as the kernel.

• Matrix 2 is restricted portion of the receptive field

During what can be known as the forward pass the kernel (Matrix 1) slides across the height

and width of the image. This will produce an image representation of the receptive region

(Matrix 2). This will then become part of the activation map which is described prior. The kernel

slides across the image in a way determined by the size, stride and padding allocated. This is

described in figure 30.

Figure 32 Convolution Layer formula

46 | P a g e

In figure 33 is the formula used in the convolution layer to calculate the number of output

features in each dimension. The next diagram below is an overview of how the kernel and the

current image create the activation map using the values in the kernel and images array map.

Figure 33 image to Activation Map

Second step from there is to send the activation map created in the first layer to the pooling

layer. As mentioned above there is multiple types of pooling layers. The most popular being

max pooling and that is the one that will be used in this example. Pooling layers replace the

output with a derived summery of the nearby outputs this will help reduce spatial size which in

turn reduces computational load. Pooling takes place in each slice of the activation layer

separately.

47 | P a g e

Figure 34 max pooling layer (DeepAI, 2019)

As can be seen above max pooling is taking place in a 2 x 2 square this can be defined and

edited depending on what would work best for the image. pooling helps to make the

representation become approximately invariant to small translations of the input. Invariance to

translation means that if we translate the input by a small amount, the values of most of the

pooled outputs do not change and thus the images integrity isn’t lost.

In the original image of the CNN architecture in figure 28 two convolution and pooling layers

are used, this is to get a small concise feature map for the fully connected layer and once again

this can be tweaked, and even more layers added to gain the most accurate results. A thing to

note however is the more layers you add the longer it may take to get the prediction.

As the fully connected layer can only read in 1 dimensional linear vector, the pooling layers 3-

dimensional image must be flattened before being sent that layer. This is demonstrated in the

figure 35 below. There is a 3x3 feature map of the image and this is flattened to a 9x1 layer

which is then run through the fully connected layer.

48 | P a g e

Figure 35 Flattening feature and getting output

The fully connected layer is a simple feed forward neural network. Generally, a CNN will have

two or more fully connected layers the above example is just a simple version. A lot of networks

can work well with one but having two can increase the accuracy of the network.

After this the SoftMax activation function is used and this will assign a probability to each class.

The one with the highest probability is assumed to be the correct output. As this network

started with an image of a 5 is should end with saying that the highest probability is that the

image is a 5.

3.5 Face Recognition

Previously it has been explained how machine learning works and how CNN’s are made. Now it

is time to look at how this connects with face recognition and why it would be used by first

explaining what face recognition is and the types that have existed over the years, after this the

application of face recognition that use CNN will be looked at

49 | P a g e

3.6 Background

In 1964 and 1965, Bledsoe, Wolf, and Bisson were early adopters of automatic face recognition,

working on utilizing a computer to recognize human faces. (Virgil Petrescu, 2019). Face

recognition is a biometric method of identification, it differs from the more intrusive

physiological methods i.e., placing an eye before a scanner or giving blood to verify DNA while

also being highly accurate as stated by Lin (2000). During the seventies research and

development started using specialised edge and contour detectors to locate parts of the face.

These are also referred to as ‘facial landmarks’. This method was discussed in comparison to

the geometry-based approach with is faster and can be used in hybrid approach's (Daniyal,

2009).

Face recognition algorithm has the following main functions; a face image detector which finds

the locations of human faces from a normal picture against simple or complex backgrounds and

a face recognizer that’s determines who the person is. Each function has a feature extractor

which is used to reduce the size of the dataset by creating new features from the existing

features and a pattern recognizer. Both of which are very important in face recognition and

these functions can be seen in many different face recognition techniques.

Types of face recognition

Facial recognition can be used for 2D or 3D images as faces are mainly having dimensions in 2D

and 3D with different textures and facial expressions. All types of face recognition require the

use of a machine learning model trained with either face locations or other methods as

described below

Firstly, 2D face recognition was used and had four steps: detecting a face, face alignment,

feature extraction, and feature matching from a database of existing users. There were various

techniques used for the face detection including colour, intensity, and illumination.

Furthermore, there were some limitations of 2D face recognition. In 2D face recognition system

recognition rate and performance are dependent on image capture conditions like head

orientation, image quality, lighting conditions, partial occlusion, facial expressions (Singh &

Prasad, 2018).

The next progression of Face Recognition Technology was 2D-3D face recognition which was

proposed by Andrea F. Abate et al. (2007) was a reliable technique for collective 2D visual

50 | P a g e

images and 3D model face recognition and was based on multiple parameters including

recognition rate, number of addressed tasks and input size. Eigen faces (described below) and

stereovision techniques were used to improve the performance of 2D face recognition system.

Stereovision aided in this as it is the process of extracting 3D information from multiple 2D

views of a scene, in which the face of a person at different positions was matched with the help

of a scan lined-based neural network.

Eigen faces was introduced in 1991 by Turk and Pentland it uses dimensionality reduction and

linear algebra to recognise faces. Eigen faces determines the variance in a collection of images

of faces. The variances are then used to encode and decode a face without the full information

which in turn reduces computation complexity. It is commonly used alongside principal

component analysis (PCA) for feature extraction and recognition were effectively used for face

recognition. This was introduced by Pearson first in 1901 and is a dimensionality reduction

technique that use eigenvalues and eigenvectors to achieve this.

Sima Soltanpura et al. (2017) presented a survey based on local attributes for 3D face

identification. Curves, key points, and surface were used to split the local descriptor. They used

picture capturing techniques to compare different situations on a 3D face database. Generally,

both face and head shape are represented as range data on a 3D dataset. An advantage of this

approach is that the 3D model knows all the necessary information about the face geometry as

stated by Abate et al. (2007). In addition to this, 3D face recognition also shows to be a further

evolution of the 2D recognition problem, because a more accurate depiction of face features

could lead to a stronger discriminating power. To show this a survey was undertaken by Zhou

and Xiao (2018) on 3D recognition. They split 3D face recognition into three directions

expression-invariant, occlusion-invariant and pose-invariant 3D face recognition. In this study

the recognition method is done using a local method. According to the aforementioned survey,

by using half face matching, a complete face model can be synthesized simply by using a

statistical model to bypass the data missing issue.

3.7 Applications of Face Recognition Using CNN

Up to this point different methods of how deep learning CNN models work within face

recognition and how the technology has developed over the years. There has been a wide

variety of industries and companies using face recognition technology to aid their work, some

of these include attendance systems, monitoring systems and criminal investigations. In

51 | P a g e

addition to this face recognition methods help save people time as it can scan the face without

human intervention i.e., scanning a key card or fingerprint. Therefore, these systems can help

different working professionals and the average in their day to day lives.

As mentioned, deep face recognition can be used to aid in criminal investigations for instance,

as discussed in a review by Virgil Petrescu, in 2019. Within this review they mention how face

recognition can help criminal investigations as these algorithms can provide additional

information that a person is unable to decipher. These systems can save the faces of suspects,

gangs, wanted criminals and those suspected of involvement in serious violent crimes.

Advances in face recognition technology can allow for CCTV security systems to be used to

identify faces at a crime scene using 3D face recognition. In addition to this a recent study was

carried to detect street crime using the VGG-19 CNN (Letchmunan et al., 2020), to see how

accurate this system would be and how it would help in the prevention of street crime. The

system ended up being 81% accurate and had 0.025 frames per second detection time.

3.8 TensorFlow and Keras

TensorFlow and Keras are two of the top deep learning libraries available in python. Both if

these libraries can be used to create accurate and robust deep learning neural networks, that

can in turn be used for face recognition. TensorFlow was developed by Google and is primarily

used for deep learning applications. It is an end-to-end library that can be used on its own to

make deep learning or machine learning models or it can be wrapped by a library that will

simplify the process. One of these wrapper libraries is known as Keras and works seamlessly on

TensorFlow.

TensorFlow was created by the Google Brain Team in November of 2015. It was creating to be

primarily used in the python programming language, but there is C++ API that can also be

accessed. TensorFlow is different from some other libraries as it was not only designed for use

in deep learning systems but also for research in production systems. For example, it was used

in the DeepDream project (get ref). How TensorFlow works is that it accepts data in the form of

multi-dimensional arrays of higher dimensions referred to as Tensors. On these inputs a

flowchart of operations can be performed using TensorFlow. As in many other systems the

input goes in one end, and it output will be returned at the end.

As mentioned Keras is a machine learning library that’s built on TensorFlow. Keras was created

to be easy to extend, user friendly and to be compatible with Python. According to the Keras

52 | P a g e

dos it was developed to focus on enabling fast experimentation. Keras is flexible and powerful

and is used by big industries including NASA and YouTube as it provides an extremely high level

of scalability and performance. All the different layers within a neural network like the

convolution layers and the activation functions are all separate modules that can be combined

to create new models. On top of this theres no need to have separate model configuration files

and everything can be configured in the one file in Python code. A Keras works with TensorFlow

it can use CPU or GPU to run models, this allows for massive models to be trained with it using

heavy duty GPUs.

3.9 Research Summary

This section went through how machine learning algorithms worked and where some would be

used and how machine learning went on the used as convolutional neural networks within face

recognition.

It investigated how different model works and which were the most useful for this current

scenario. It also went through and described in detail how neural networks work and why they

have grown in popularity over the years. The examples show how these can be used in days to

day life.

Supervised learning is the path that was chosen for this projected as most CNN’s are made

through the supervised learning method, this is also currently the most accurate for smaller

datasets. There is a clear progression from linear supervised learning to the non-linear models

and understanding how all of this connects and how it progressed will help with choosing which

model to use as each layer has been investigated and thoroughly researched. Once the CNN’s

were researched this chapter goes through a background of face recognition and how it has

progressed and why CNN’s became popular for it. Researching other applications and reading

through research papers on different pretrained models gives insight into what to avoid and

what to try to make a robust CNN model. This also shows that they are useful in attendance

taking as they have become so accurate and so fast over the years.

53 | P a g e

4 Design 

The following chapter will describe the functionality and system architecture of the face

recognition system being developed. This system will be implemented into a web application to

demonstrate its functionality. The application being developed for this project is a face

recognition model and application. there are three main layers to this application. Firstly, there

is a server layer which is the most integral for this application as it contains the recognition

model.

Firstly, the chapter details the system architecture of the application. It shows how the

different layers communicate with the other. This is followed by briefly explaining each of the

technologies that will be used. Following this there will be an explanation of the inner workings

of the model and sequence diagrams detailing how each function works within the

application. After all the process design is demonstrated the user interface will be shown and

how that will look and interact with the model.

4.1 System Architecture

This application will be created using the python Flask framework and using Jinja2 templates for

the frontend. The recognition model will be written in Python using the Keras and TensorFlow

Libraries and called within the flask application. To test against the existing faces in the training

set a ‘Result Map’ of Faces will be used (as seen in the data layer). Requests will be sent

through the templates to the Flask server and this will in turn call the model to send a

prediction back to the user. Using the Flask-SQLAlchemy which is a SQL toolkit to allow the

Flask server to connect to a SQL or SQLite database. The attendance will be stored in a table

within the database. The system architecture can be seen in figure X.

54 | P a g e

Figure 36 System Architecture

4.2 Sequence Diagram

The sequence diagram in Fig X shows how the various layers will interact with the other. This

includes how the user interacts with the client layer and how the client layer interacts with the

server and recognition layer and also how the server connects with the database. When a user

uploads an image of themselves it is posted to the server, which will call the recognition model.

The recognition model will then run and return a prediction to the server. This prediction will

be displayed to the user along with their image. Then the name that was predicted is added to

the database along with a timestamp to the attendance table. This will have the user marked as

present.

The user can also capture an image of their face using the webcam and this is then posted to

the server similarly to the uploaded image and the model predicts who it is and displays it to

55 | P a g e

the user. This feature can also be used to add new images to the training set if the user is new

or just to add to existing users as to make the training set more robust. These images are also

saved to the database.

Figure 37 Capture Image

4.3 Database Design

The database will have two tables. One to store the attendance and another for storing images

One to store the faces and one to store the images or snapshots in the database. This will be

used for training and testing the model as well as detecting if an inputted image of a face

matches a person in the database.

56 | P a g e

4.4 Process Design

This design stage was used to figure out how each step would work together to reach a goal.

The main process that needed to be designed was how an inputted image would be seen to the

model and the various response to that once it was predicted. In fig 8 a flowchart is shown

demonstrating how this will work with in the system this is then followed by pseudocode

describing this feature. Another small diagram is shown also to demonstrate how an image is

sent for training.

Model Recognising Inputted Image

Figure 38 flow chart

1. In either insomnia or the frontend of the application you will upload an image.

2. This will be sent as a POST request to the API.

3. Once the API gets the image it will load it and set it to a certain size to fit the model. The

image will be converted to a NumPy array.

4. The dimensions will be expanded to a 4-dimensional array.

5. Use the model to pre-process the array to prepare it for predictions.

6. Use a CNN model to predict the face against the faces in the current map of faces.

7. Output percentage chance it’s a certain person in the database.

8. If it doesn’t match any faces the face will be added to the training folder.

9. The predicted persons name will be added to the database along with the timestamp

57 | P a g e

Image captured for training

Figure 39 image manipulation example

This specific case is about when an image is captured for a user that isn’t is being added to the

site.

1. User takes image using web application

2. Image is sent to the server.

3. Image size is set and saved to the training folder in its own folder with a random name.

4. This image will then be identified by and admin and manipulation will be ran on it.

5. Either manually or within the server the image manipulation will be run.

6. The model will be retrained with the new images by the admin.

4.5 Model Design 

The model that will be used in this application will be a convolution neural network (CNN). This

was explained in the research chapter. It will take a lot of tweaking and editing to get the ideal

model for this application as every model is different and what works for one model will not

work for another. A larger dataset with more images in it will arguably be easier to train

accurately than a small dataset. This will be a problem that will be addressed in the

implementation of the model as the dataset has around 2000 images in it.

To help with understanding how these models work the developer plans to look at the MNIST

and ImageNet datasets that are both accessible using Keras. ImageNet is a dataset of images

from over 1000 categories and there were ImageNet challenges held to see which CNN was the

most accurate for it each time. One year the VGG16 model won the challenge, this model will

be looked at to gain understanding on how categorical CNN’s work. The MNIST dataset is a

dataset of images of digits and this will be used to help understand how Keras is used to create

CNN’s.

58 | P a g e

The different methods that the developer plans to look at are methods using the Keras and

TensorFlow along with dlibs face_recognition library in Python. The steps in creating a

recognition model are shown in figure 38.

Figure 40 steps of creating recognition model

The dataset that is chosen is of random faces from multiple angles of people and celebrities on

the internet. All these images are free to use for use in creating face recognition models. The

developer also added images of themselves and friends to be used in the model. The images

are separated into two folders, one for training and one for testing. Within each of these

folders there are multiple folders with the name of each person that the model will be trained

to recognise.

Next is to pre-process and manipulate the images. In this part images sizes will be changed to

the same size and extra manipulations of each face will be added to each folder so that the

dataset will be bigger. In this part each category will be labelled with a number and saved to a

file, each person having a corresponding id and that will be used for training. In this part of the

process OpenCV and Keras will be tested, and the best or most efficient method will be chosen.

For model training and evaluation part first the model needs to be created. This will either be

designed using Keras sequential model which creates the model layer by layer and contains a

module for each layer or OpenCV with dlib. Dlib is used within python to connect to the

face_recogntion library. This contains premade models that would be used instead of creating

on line by line. An issue with this is there’s less choice in how to make it where there is more

options in Keras. Before the evaluation process the model is fit and compiled, then it is

evaluated in epochs. An epoch refers to training all the data for one cycle, as in in one epoch all

the data is used exactly once. Tweaking the amount of epochs can increase or decrease the

accuracy, for a small dataset between 15 or 20 epochs should be enough to train the model to a

high accuracy.

Choosing a
dataset

Prepossessing
and image

manipulation

Model training
and evaluation

Model testing

59 | P a g e

Once the model is evaluated the developer will have an idea of its accuracy and then it will be

tested. Different methods of testing can be used. One of the methods that’s in the Keras library

is a simple predict() method this will accept an image and then predict who of the known faces

it belongs to. Another method that will be tried is within the face_recognition library where two

images are loaded, and it is tested whether both images are of the same person or not.

That is an overview of how the model is designed and in the following chapter these various

methods will be tested, and a model chosen.

4.6 User Interface Design  

This section describes the user interface design for the application. It will also go into what the

application would look like with further developments also. The base features of the application

are shown in the images and will be explained accordingly. These can also be viewed at

Appendix B. There will be three main pages of the application along with a base page explaining

what the application is.  

The upload page will have two buttons to upload an image, one of which will show the user the

image they uploaded with the name of the predicted person after upload. The other button is

used for adding a new person and this is saved to the database. It will be specified that the

filename must be the name of the person as that will be saved in the database alongside the

image. In future, this would also have the option for the person to select or not the prediction is

correct and to also select the correct person. If it doesn’t predict that its anyone on the list the

name will be left as unknown but still added to attendance.

60 | P a g e

Figure 41 Upload image page

On the page shown in figure 40 there will be a feed from the webcam on a computer being

shown. If there is no webcam on the computer, the webcam view won’t show. There will also

be two buttons one for basic capture which will send the image to the server to be uploaded

and to add to person to the attendance. The other button is to start and stop the stream of

video. The image that is captured will be sent for image manipulation and be added under a

folder with the name person that it was predicted to be. This folder of new images will be

stored in a folder outside the training folder to be added when the model is being retrained.

The person that captured the image will still be added to the attendance.

61 | P a g e

Figure 42 Capture image page

On the page shown in figure 41, the attendance list page is shown. This will show the current

attendance for the specific day. This attendance is saved to a csv file along with into a

database.

62 | P a g e

Figure 43 Attendance view page

4.7 Design Summary

Overall, this chapter has discussed how he application will be designed from end to end. This

application aims to take attendance by use of a face recognition model. Th system architecture

described how each layer will communicate with the next and what will technology and

elements will be in each layer. Then there is sequence and flow diagrams showing how each

request will be treated and the step-by-step response from the application.

After this the model design is described and the various options that will be looked into the

choose the best one for this application, this also goes over how the dataset will be created.

After this the database design is discussed using the ERD (entity-relationship diagram) to show

how it will be structured. After this the user interface is discussed and shown via Figma created

wireframes. This part explains what can be done on each page and the purpose of each feature.

63 | P a g e

5 Implementation

The following chapter details how the application and facial recognition model were chosen

and implemented. This chapter goes through the implementation of this application. It details

the various models tried and tested in the process of creating the face recognition model.  Then

how this model was also implemented into a web application using the Python Flask

framework. While integrating these together a few test applications were created. Parts of

these applications and scripts were then combined into the final face recognition application

including the attendance feature.

Before delving into the implementation of the facial recogntion model, the developer decided

to take some time to analyse pre-existing image recognition models like VGG16. After some

research, the developer decided the best way to start the implementation was to understand

Keras using the MNIST dataset which is a dataset of handwritten digits from 1 to 9 which is used

within machine learning and deep learning models. For the face recognition library, the

developer decided to research OpenCV and Keras in Python. Using the knowledge gained with

these tutorials a roadmap was created by the developer. The roadmap is shown in figure 42 and

43. This roadmap is an updated version of the project plan. It has been altered slightly to

combine some of the phases as they have crossover.

Figure 44 Phase 1-3

64 | P a g e

Figure 45 Phase 4-6

5.1 Development environment

To develop this project GitHub was used for source control management and Anaconda which

is a distribution of Python packages was used as the development environment for the project.

GitHub is useful for version control which is necessary when working in groups or using multiple

machines for one project. The developer for this project used GitHub as they were working

from home and college to make the project. It was useful for using in multiple places as its easy

to push and pull code from a git environment. Anaconda is used mainly for data science. It

allows for simple package management and deployment. It comes with over 250 packages

automatically installed. Multiple environments can be set up using the different versions of

python which can allow for easy management and reduced the amount of conflicts. Anaconda

is also useful for working on multiple devices as environments can be exported and imported

easily using the conda cmd within Anaconda. The developer installed Jupyter and VS Code to

use within Anaconda. Jupyter is a notebook interface used for coding in Python and other

languages. Within this environment visualisations can be created along with live code and

questions. Visual Studio Code is an IDE and was mainly used for creating the flask application as

it allows for coding full scripts easier and connecting to a database is easier within an IDE.

Whereas Jupyter was used for creating the CNN model and the data pre-processing methods as

it was easy to visualise how the model was being trained within Juptyer. There is also an

extension to view Jupyter Notebooks in VS Code so using these alongside each other allowed

for a smooth process.

65 | P a g e

5.2 Image Classification and Model Preparation

The goal of this was to learn how to create a CNN in Python using various libraries and to

choose which of these to use in my application. This section will also analyse and explain how

these models work and why one would be used over the other. Through this section, the

developer analysed the VGG16 network which is a pre-trained network that was used with

ImageNet. Another goal of this section is to show how to create an accurate model while only

using a small training set using image manipulation. Also, this section will explain how to save

and load a model from different libraries.

Pre-processing is a very common term to hear within the creation of neural networks and even

machine learning models. It’s important to know why this is used and how pre-processing helps

in the creation and implementation of models. In image processing it is required to clean the

data before it is inputted into the model. This is needed for when a model has a specified input

size which will be seen in the models that will implemented. Every image needs to pre-

processed to a certain size and then converted into an array as it cannot be read otherwise by

the model. Using pre-processing can also decrease the time is takes a model to be trained and

can make a model more reliable.

5.2.1 Understanding CNN’s with Keras

To begin learning how to train a neural network using Keras and how the structure works the

MNIST dataset was used. This dataset contains hand drawn digits, and it is used to train models

to recognize inputted images of hand drawn digits. The developer decided to start here as this

dataset can be loaded in with Kera's very easily and it is an effective way to become

comfortable with using Keras.

To start with the necessary libraries must be imported. The dataset is loaded from the

keras.dataset library. Pre-processing tools are imported from the Kera's image pre-processing

library, these tools are for loading and converting the image to an array. the Kera's

to_categorical class is for separating the data into bins(a bin for each digit). The type of model

that will be used is a sequential model this is because it allows the developer to create a model

layer by layer which is the ideal way the create a CNN model.

First the data was loaded into NumPy arrays to get the shape of the arrays. The images are

stored as 28x28 pixel images. To view this as an its image format and not as an array the

66 | P a g e

matplotlib library is used. The developer specified the cmap (colourmap) as grey so that the

picture was grayscale and not in colour, as the digits will be used as grayscale images in the

model.

Figure 46 image from dataset

The depth of each image is 1 but this must be explicitly stated in the expand dimensions

method when reshaping the images for the model. Change the type of each image to a float so

that when they are divided by 255 all of the data is between 0 and 1. This will show the image

as a binary map which can then be used with the CNN model. Final step before the model is

built is to set a layer where the result can be sent, this will be 10 separate groups for each digit.

This will be done in the y_train and y_test using the to_categorical method. the output from

the model will go into the appropriate bin.

Figure 47 pre-processing train and test sets

67 | P a g e

 This CNN model will have two convolution layers, two max pooling layers and two Fully
connected layers. The activation function that’s used within the hidden layers is ReLU and the
final layer used is SoftMax. There are many parameters that can be added to the convolutional
layer to suit it to the specific model. In the first convolutional layer the input shape is specified
(this is the shape of the image), as well as the kernel_size, padding, and activation function. This
is repeated for the next convolutional layer, but the input shape does not need to be stated
again. “padding=’same’” is used when the output size will be the same as the input size and this
will also ensure that the filter is applied to all the elements of the input. maxPooling2D is used
for 2D spatial data and as the images have a depth of 1 it can be used for this model. After
these layers run, there will be a feature map left and this map is then flattened making each
feature map 1 layer of 784 nodes, each node is the value of a pixel within the feature map. All
images will now be a single layer of 784 pixels also known as nodes. The next two layers are
called Dense layers within Keras, which means that they are fully connected layers these are
the final layers of the network. The second fully connected layer uses SoftMax instead of ReLU
as it is the best at handling multiple classes which is needed for a categorical model like this.

Figure 48 digits model layers and compiled

After this the model is fitted and accuracy is shown after each epoch. An epoch is a unit of time

used to train a neural network with all the training data for a single cycle. We use all of the data

exactly once in an epoch. A forward and backward pass are combined to make one pass. After

the model is fit is it obvious that it is extremely accurate as the accuracy is above 99%.

Figure 49 Evaluation using epochs 99% accuracy

68 | P a g e

5.2.2 Understanding ImageNet

After using digits to understand Keras and how it works to create a CNN model with simple

images the developer decided to move on and look at how it works for more complex images.

This was done using ImageNet and VGG16. ImageNet is an image database with over a

thousand categories varying from glaciers to flies. These are all categorised and has been used

to test CNN models and see which is the best. VGG16 which was created by the Oxford

Geometry Group was the most accurate model in 2014 when used to predict images in

ImageNet.

 VGG16 was used instead of creating a new CNN because there is a pretrained model using

ImageNet and as ImageNet contains thousands of images it would take too long to train a new

model. Along with this VGG16 won the ImageNet challenge, meaning that is an accurate and

reputable model.

There is a VGG16 model within Keras making it quite simple to get access to, all that is needed

is to import VGG16 and to image pre-processing libraries for preparing the images. The weights

for imageNet will be imported into the VGG16 model as training would take hours. Then an

image that is saved within a folder of images is loaded into the application using Keras pre-

processing library for images, the target size must be set as 224 x 224 as that is the size of the

image used within ImageNet. The image is then loaded in at this size and saved within the

variable ‘img’.

Figure 50 loading in image into VGG

69 | P a g e

The image then needs to be converted to a Numpy array and then the dimensions must be

expanded as the model will expect four dimensions. The expand dimensions method within the

Numpy package will change the image from (224,224,3) to (1,224,224,3). It needs to be in four

dimensions as it needs to be in the format (batch size, image width, image height, image

depth).

To then pre-process the image before inputting the image, the developer used the vgg16

preprocess_input which is available with the package to pre-process the array.

The image must be sent to be predicted. There are 1000 categories of prediction in imageNet

and it will be predicted as one of those, the closest prediction will be assumed as the correct

one. In this example the top 5 predicted categories are displayed along with their score. The

score is how similar the image is to others in a category.

Figure 51 VGG imageNet prediction

The value of using this and analysing the ImageNet dataset is to see how accurate a pretrained

set is and how quickly it gets the prediction. Another thing that was valuable is that it increased

the developer’s knowledge of CNN’s by using this model and that knowing a few of the top

predictions rather than just one would be useful down the line.

5.2.3 Image Manipulation

To create an accurate face recognition model, it is important it is important to have a diverse

range of images of each face in the dataset. Image manipulation works by rotating the image of

the face slightly or distorting it so that the face can be recognized at different angles. Image

manipulation can be done in many ways using python and there are libraries that be used to

make the data augmentation of images quick. For this project OpenCV and Keras were looked

at to do the manipulation. OpenCV has many techniques including rotation and flipping the

70 | P a g e

images though I found it was a bit tricky to do many small augmentations without having

trouble below is some of the problems I came across. OpenCV is useful for cropping a large set

of images together though which an be useful, in the case of this dataset the developer wanted

pictures with faces far away and close to the screen so it wasn’t used.

Figure 52 cropping image using OpenCV

Kera's on the other hand has a class that can do this with less lines of code and has more

options for how to augment the image. This class is called the

keras.preprocessing.image.ImageDataGenerator class. This is used to configure random

transformations of images using various parameters including flips zooming and shifts.

Through testing different zooming and rotations, it was discovered that if certain rotations

were chosen the image became unusable, shown in figure 34 . This meant that testing had to

be done with various rotations until a useable rotation was chosen. As seen in the unusable

image the face is cropped out and a lot of the image is blue, this could cause bad testing as the

image is a god image of a face. The useable image has a small bit of a blue border but because

the full face is still in view it can be used. There are many parameters that can be used the ones

that the developer used can be seen in the figure 33 with the descriptions of each parameter.

After choosing the suitable parameters multiple manipulations of each image were created and

saved into premade folders.

71 | P a g e

Figure 53 Image data generator that was used

Figure 54 unusable image- manipulated

Figure 55 original image

Figure 56 usable image - manipulated

Figure 57 original image

72 | P a g e

5.2.4 Saving and Loading the Model

It is important to save the model created so it can be used for future projects and also so it can

be loading into applications. This is quite a simple thing to do but it does work differently for

different models. Joblib and pickle can be used to save a model, as well as this Keras has its own

method to save a model.

Pickling a Python object structure means to serialize and deserialize the object. N this process

the python object hierarchy is converted into a byte stream and when it is ‘unpickled’ the

inverse is operated. Joblib runs the same operation but is more effective than pickling for large

Numpy array, this is due to the fact it contains special handling for the array buffers of the data

structure within Numpy.

Figure 58 save and load model - joblib

Figure 59 save and load model - pickle

A Keras model can be saved using pickle but it is recommended to use its own methods. Keras

has its own internal libraries to save and load the model. There are two options the Saved

Model option which is the newer version and saving the model in H5 format. In this application

the developer decided to use theH5 format as it is more lightweight and saves everything as a

single file rather than a folder of files with the saved model format. This saves the model's

73 | P a g e

architecture, weights values, and compile() information in a HDF5 format. The main reason to

use Save Model over this is that it saves external loss metrics that aren't calculated within

layers of the network. As the model I am creating contains only loss metrics within the layers of

the network this isn't an issue.

Figure 60 save and load model - Keras

5.2.5 Model Comparison

The next step was to start towards creating a model that would solely predict faces. This would

be similar to the layout of ImageNet and its category system. The easiest way to begin this was

to create a system that would predict whether an image was a specific face or if it was not that

face. To avoid any issues regarding permissions to use a face the developer decided to use their

own as the subject of this model. To test this multiple models were tested against each other.

The chosen models are SVM (Support Vector Machine) with PCA(Principal Component

Analysis), The face_recognition library in Python used with dlib, Keras similar to the one used in

the MNIST example above and VGG16 as explained above. All models will be shown below with

their accuracies.

SVM is not a convolution neural network and the main reason this was built is to study how

these are built themselves and to test it against the CNN versions to prove that they are more

accurate. PCA can be used within most prediction models and is used for dimensionality

reduction as mentioned in the research chapter. As mentioned above images must be resized

and changed to Numpy arrays to be read by the model. The faces in this model have been

cropped and resized as necessary and categorised into two folders.

PCA is used to reduce the dimensionality to reduce the computational load and then create the

eigen images uses the eigen vectors. Once thus is done the SVM model can be trained, the SVM

model can be imported using sklearn and then trained with all the images that were pre

categorised and tested. This is shown in figure 60.

74 | P a g e

Figure 61 SVM model setup

For a new image to be added to this and to make sure it matches the data in the dataset a

pipeline model will need to be made to run some pre-processing to fit it to the model. This is

made using the help of OpenCV. Through testing it was discovered that it Mainly works for

frontal classification and not very good at anything else

The next model that was created was done using the python face_recognition library using dlib

which is a toolkit for creating machine learning applications in C++ originally but contains

Python bindings as well. There are two different versions of this library that will be used. The

first is the detector which is created using HOG and SVM. The other being the CNN detector.

These models were both first compared against the other and the CNN one was the best this

also HOG which is Histogram of Oriented Gradients. After looking at how these models

calculate the prediction it was decided to leave them out of the comparison as they weren’t

very malleable and the developer wanted to be able to have more control over the model. The

figure below it shows how to make a face comparison script using dlib and face_recognition

75 | P a g e

Figure 62 dlib face comparison script

The two other models being used is the built in VGG16 model and a Keras model that is

modelled similarly to the one described previously.

The comparison will be done with the VGG16 model within Keras, the SVM model and the Keras

model that the developer made when using mnist but will be retrained for this comparison.

These were all compiled and trained using the same dataset and then tested. Each model was

tested on ten different images and the training accuracy was taken into account too. The SVM

model was the poorest which was expected and the VGG16 and the custom Keras model

predicted 9 out of 10 correct but the VGG had the highest accuracy overall.

The VGG16 model performed the best but only by a small margin due to this the model that

would be chosen would be the custom one using some of the elements in the VGG16 model,

including similar amount of convolution layers and same activation functions. Combining pre

existing methods that are accurate with the ability to tune to exactly what is needed will speed

up the training stage as the model being used already is over 90% accurate.

The model setup and test for the chosen model is shown in figure 62.

76 | P a g e

Figure 63 The models layers set up

Figure 64 Testing the models accuracy

5.3 Machine Learning in Flask

In this phase the flask framework is shown and how it is possible to use a machine learning

algorithm within its framework. This is first tested by using text inputs and then followed up

77 | P a g e

with image inputs. The goal for this phase is to create a Machine Learning API within flask that

will accept an image and then run a prediction on it.

5.3.1 Setting up Flask

Firstly, the flask application must be created within Anaconda. Flask is also pre-installed with

Anaconda. The IDE that the developer is working with is VS Code, to use Python in VS Code a

Python interpreter must be chosen, this interpreter will be the environment in which Anaconda

is running currently. All further modules that need to be installed for the application must be

installed within that specific environment or they won’t be accessible by the application. Flask

comes with a light-weight web server that can be controlled by your Python code. The way to

set up this server is shown in figure 37.

Figure 65 Set up flask server

The code states that first flask is imported from flask. Then an instance of the Flask class is

created and the ‘name ’ variable is passed. In the @app.route(‘/’) the route() function is a

decorator function this means it is a function that takes another function as its argument. This

tells Flask that at that URL it must run the home() function. This home() function will receive a

request and send the required output. In the case below it will just return ‘Home route is

running’.

To run the server, all that’s needed is to run the command below and then navigate to the page

on localhost:5000. This is the port that Flask automatically runs on.

The next step is to create a function for the model and load it in. The model that will be used is

saved in a pickle file. This file can be opened and used within a flask application. To begin

testing this the developer had to first install all necessary dependencies into the application

including pickle and Keras. To avoid creating a webpage immediately the testing was done

78 | P a g e

inside insomnia which is a REST client for testing RESTful applications. The application being

created is an API using HTTP requests so it can be testing within this interface.

5.3.2 Testing In insomnia

To begin the testing within insomnia the developer started with a pre-made model for testing

whether or not a person would survive on the titanic. This was chosen instead of using an

image model initially as the set up was easier and it was used to make sure all elements were

working as planned. Another reason this was done is that posted images is more complex and

the purpose of this test was to check if insomnia and flask were communicating and also that

model was being opened correctly within flask. Below shows the request made in insomnia and

the answer given in the console.

Figure 66 Example titanic dataset prediction

This was all repeated using the MNIST dataset as there are many available digit images online

to test on it. As mentioned above to POST an image is more complex than just sending test. This

is mainly because the file must be in certain formats and be of an exact size or the size will be

changed within a method in flask. For the purpose of this only images that were the same size

as the ones in the training set were used. This was a step-by-step approach to make sure each

feature that was needed worked instead of just testing everything immediately. The way this

worked was that you uploaded an image into insomnia and POST that to the ‘upload’ route.

Flask then receives this request and gets the file from the request. This file is then sent to the

pipeline model. The pipeline model converts the image into an array and changes it to greyscale

if necessary (all digit images are greyscale by default). This model would also resize the image

into the required size for the model before changing it to an array. Image is then sent to the

model for classification, this is the model that is shown in fig X in section X. This model then

returns a prediction of which digit it assumes the image to be of, this is shown in the console.

79 | P a g e

5.4 Working with a Database

The aim of this phase was to figure out how to connect Flask to a database. There are

extensions for Flask to allow it to be connected to a database the one for connecting to an SQL

or SQLite database is called Flask-SQLAlchemy this must be installed into the Anaconda

environment and then imported in the Flask application.  SQLAlchemy can be used within Flask

without the Flask extension but the extension provides useful default to simplify using

SQLAlchemy in Flask

The first step was to create a flask application object and set the database URI.

Figure 67 SQLite DB URI

Next step is to declare the models for each of the database tables that are being created, image

and attendance. The base class for the models is db.Model, this is stored in the instance of

SQLAlchemy that is made and shown in fig X. Names of columns are assigned using the

db.Column class, within this you name the column and also give the column a type for example

db.integer or db.string this is demonstrated in figure 66.

Figure 68 image model initialisation

To then create this database, open the python terminal and run the following commands.

Figure 69 Creating table in python terminal

80 | P a g e

To test that this created the table a browser extension must be downloaded to view the

database in SQLite as VS Code cannot display it on its own. Once the extension is downloaded

the database should show the table that was just created.

Figure 70 Table that was created from the model

Once this is done the method for uploading a file must be changed to allow the image to be

added to the database. This means we have to send the data that matches the table data

structure to the model and also open a database session to send the image and close it once its

complete. Once this was successful a message was sent to the console and the image could also

be seen in the database. Next the developer tested that the image was being saved accurately

and there was no loss of quality to the image. This was done by creating a webpage to return

the image.

5.5 Integrating Model with Database Application

The goal of this phase is to create an application where the image is uploaded to the database

and saved as well as a prediction is run, and a console response is received. In addition to this

the attendance functionality will be added along with all the necessary pages for the full

application.

Firstly, the developer wanted to set up all the necessary folders and files in a readable format

and make sure everything connects. This structure contains:

• A templates folder

• A folder with all the training images and the model

• A utils folder

• A model folder

5.5.1 Integration Issues

At the beginning of this process once there was a route to get a prediction and to add an image

to the database. The developer decided to do a test run to see if everything integrated

correctly, there was immediately errors with the building the application. This means nothing

81 | P a g e

would run and specifically scikit learn wasn’t working which was used with the recognition

model. This error was caused by Python version conflicts and while trying to reinstall and

uninstall packages within the environment more errors with package versions started occurring

until the main error was discovered. The model happened to be trained using Python 7 and

therefore another version of scikit learn was used whereas the flask application that was in this

environment was created using Python 8. The application needed to stay in Python 8 as it has

the most widespread support along the various modules the developer was using. With the

switch to Python 8 TensorFlow and Keras had to be reinstalled in a different version along with

a few other modules including scikit learn which is integral to the creation of this project as it is

one of the base libraries.

The developer decided to create a new environment in anaconda and all the dependencies

were re installed using the anaconda cmd interface. This was the best way to make sure

everything worked together instead of altering the other environments. These requirements

were then exported to a requirements.txt file for future use in case the project needed to be

downloaded elsewhere.

5.5.2 Creating Templates and Routes

Once the base route and model were working the templates were created. The templates were

all created using the Jinja templating language which is basically a text fil that can generate and

text-based format. All of the templates used a base template as the skeleton of the layout. This

meant that the base contained the header, footer and any other common elements between

pages. The rest of the created templates are extended from this base template and are called

child templates. This saves on load time for the pages as the base is always loaded and just the

internal elements of each page are altered.

The block tags ‘{% block %}’ define four blocks that the child templates can fill in, they are the

title, head, content and end blocks respectively. The only thing this block tag dopes it alert the

engine that the extended template might override these portions. To allow the Jinja engine to

know the template is extended from another it must contain the extends tag ‘{% extends

name_of_parent %}’ at the beginning of the page. The template in figure X is a child template of

figure X. In the child it shows that its overridden the blocks expect for the end block.

Using these templates ‘if’ and ‘for’ statements can be used within the html, this used in the

following image to show the uploaded image once the prediction is ran.

82 | P a g e

Figure 71 prediction template - child template

When routes are being set up, the methods that will be used within the function in the route

need to be stated. For example the attendance route needs the GET and POST methods, the get

and post requests wont work unless these are explicitly mentioned.

Figure 72 all URLs for application

5.5.3 Adding Upload Prediction Functionality

In order to add the prediction functionality the model must be loaded into the application and

then a pipeline model must be created. The model is loading in using Keras load_model

method. While this done the mapped_faces which is the current list of faces that the model has

been trained with.

Figure 73 loading model and map

83 | P a g e

A pipeline contains the pre-processing necessary for the image to be sent to the model and that

pipeline will also return the result and send to the webpage. This is the template that’s shown

above in figure 42. The image is loaded into the pipeline and the target size is set so that it fits

in the model. The dimensions are then expanded to allow for batch size to be added to the

dimensions when testing. This array of the image is then sent to the model for prediction and

the prediction is save dint he result variable. This is then printed to the console using the

mapped_faces to find the result as the result returns as a number and the faces map contains

the names. The next few lines are describing the text that will be used to display this to the user

and is done using OpenCV. Using OpenCV’s put Text method the result text is placed on the

image. The 'cv2.imwrite’ saves the image in the specified location with the wanted format and

this image can then be shown on the webpage with the result.

Figure 74 pipeline model

The functions shown in figure 45 are needed to predict and show the image in the webpage.

The getwidth() function gets the path of the image and calculates it width, this will be needed

to correctly view it in the webpage. The following method called if an image is uploaded it gets

the filename and path, saves the path and then calls the pipeline model shown in figure 44 to

get a prediction of who is in the image. This template is then rendered, and the prediction

shown.

84 | P a g e

Figure 75 methods for prediction webpage

5.5.4 Database integration

Adding the SQLAlchemy to the application and creating the database tables. Once the script in

figure 76 is ran the database is created along with the models shown in figure 77. One of these

will be used to store all the attendance while the other will be used to store images of unknown

users of the application.

Figure 76 Script to create database

85 | P a g e

Figure 77 Database Models - tables

5.5.5 Adding Attendance

The function shown in figure 78 is used to mark attendance and save it to a csv. After the

pipeline gives a prediction the markAttendance() function is called and the name for the

prediction is sent to it. The csv file is then opened and sets myDataList as f.readlines. This just

returns the current list of attendees. Then it adds a comma separated line and write the name

with dtString. This string is the date time which will be counted as the timestamp. The date

time is imported from the date module in Python.

Figure 78 Attendance saved to csv

Once this was working correctly, it was converted to a method that would save the name and

timestamp to the database. This method is shown in figure 79. The datetime needed to be

86 | P a g e

converted to a certain format or it wouldn’t save correctly and also saving it to this format will

make it easier to display to the user as the change ahs already been done. The Attendance

model is passed the parameters for name and timestamp, and this is saved to att. To check that

this is happening it is printed to the console. Then to save it to the database a session must be

started and then the item is added and then committed to the database. After this check the

database if it added and once that’s working the attendance functionality is created.

Figure 79 Attendance saved to database

The next step of this is to be able to view this within the application. A template was created for

the attendance with a table for it to be viewed in. The route for attendance was set up. In this

route a query must be sent to the database to retrieve the attendance in this current instance

the developer wants to view all attendance ever gathered. This is done using the following code

and is queried as the template is being rendered.

Figure 80 Index route - shows attendance

5.5.6 Adding Basic Image Capturing Functionality

Instead of using a constant video feed for predictions, the developer decided to add an image

capturing function to use instead of only having an upload feature for predictions. This was first

implemented to send an image to be trained or to add a new user to the training set. The

current way this works is that an image will be saved to a folder external from the training

images folder and the admin will need to manually retrain the model with the new person. The

87 | P a g e

new person will still be added to the attendance regardless of this as they will be told to insert

their name and then capture an image of themselves.

The first step of this process was to connect to the web cam using OpenCV to start the video

feed, this done by using the VideoCapture(0) object to get the feed of the webcam, the default

value of the webcam will be set to ‘0’. Then to read the frames of the camera frame by frame

the .read() function is used. To show that the webcam is picking up this a route for the video

feed is set up and this is linked to the capture template. It is displayed in an image object on the

page using the url for the video_feed() function

Figure 81 Capture image template

Once the camera was set up a method to control the capturing of the image was set up. Post

request sent to the method and the capture variable (a global variable) is set to ‘1’, it originally

was set to ‘0’. This also sends the captured frame to the function, as the global variable was

switched the image capture will be saved in the capture_save function. This function is run on

a loop through the video_feed function.

88 | P a g e

Figure 82 Capture image function

Within the capture_save() function the image frame is read in and saved in the image variable.

Then the path for where the image will be saved is created using the OS module. The OS

module in Python allows the developer to interact with the operating system for example

making paths, creating, and deleting files and folders. Then using the ‘cv2.imWrite()’ function it

is saved using the path. This feature at this point was used to add photos to a training folder

and not for predictions.

5.6 Model Finetuning

For this phase, the chosen model is taken and finetuned and tested until it is as accurate as

possible. To do this first the current training set is fit, and the accuracy recorded. Then other

iterations are chosen, and all accuracy recorded until the model becomes as accurate as

possible. Different iterations that were chosen were to use an extra convolution layer, change

the kernel and padding size, use an extra fully connected layer in between the original two and

changing the number of epochs used while fitting the model. During this phase the developer

also looked at making the model more diverse as from looking through the images most of the

faces were of western type faces and better models have faces from around the world.

89 | P a g e

5.6.1 Retraining the model

To start retraining the model the current model’s accuracy was recorded by fitting and

evaluating the model, the model was fitted 5 times and the average of the evaluation was

taken. The average was 92.86%. Ideally this should be increased to 99% for the model. After the

evaluation was recorded the model was tested by having it predict 10 random images from the

test set, in this test the model got 8 out 10 correct. This means there is plenty of room for the

model to improve. In figure 84 the current summary of the model is shown with its current

layers. There are 2 convolution layers with ReLu activation and two mac pooling layers a

flattening layer and two fully connected layers which are referred to as dense layers in Keras.

Figure 83 first model evaluated

Figure 84 first model summary

To retrain the model three main changes were tried and tested. These were adding one extra

convolution layer after the first convolution layer, changing the size of the kernel from (5,5) to

(4,4) and to add an extra dense layer. After completing these evaluations, it showed that all

90 | P a g e

three changes made the model accurate in each instance. Two extra evaluations were tried

after this being all three changes used above added together and changing the kernel to (3,3).

Then each of these models were tested with predicting 10 images. The results of these

evaluations and tests are shown in the table below. This shows that that the highest accuracy is

currently at 97%.

 Layers Kernel Size Accuracy

First model 2 conv, 2 pooling, 2 dense – SoftMax 5,5 0.9392

Second model 2 conv, 2 pooling, 2 dense – sigmoid 5,5 0.9234

Third model 3 conv, 2 pooling, 2 dense - SoftMax 3,3 0.9509

Fourth model 2 conv, 2 pooling, 3 dense - SoftMax 3,3 0.9556

Fifth model 3 conv, 2 pooling, 3 dense - SoftMax 3,3 0.9786

5.6.2 Adding more Manipulations and Images

Once the finetuning increased the accuracy to 97% the developer decided to add more

manipulations and image of new people to the dataset to examine This was done in the hopes

of making the model even more accurate as a larger dataset can increase accuracy. 50 extra

images were created from manipulations for each person in the dataset. These manipulations

were done using the Keras DataImageGenerator. After all of this was completed the model was

retrained and evaluated using the updated dataset. More epochs and steps were added,

because adding more images will allow the batch size to be increased which in turn allows more

steps to be added.

After this evaluation was completed the accuracy that was shown was 98.5% on average. This

model as then tested on multiple unknown images and every single one was calculated

correctly. In figure 85 the summary of the model chosen is shown.

91 | P a g e

Figure 85 Summary of chosen model - Finetuned

5.7 Final attendance app in Flask

This phase's goal was to put the finetuned model into an application that fit the requirements

for the application. For this phase a few final changes were made and added to create a better

application. Also, this focused on cleaning the application and making the structure of the files

easy to follow. The features that were added here was to delete images once the person was

predicted, get the prediction printed on the web page and not just in the console and to add

prediction functionality to the image capture function.

5.7.1 Added Features

Adding Capturing image functionality to capture, this was relatively easy to implement. After

the image is saved to the training folder it is sent to pipeline model to get a prediction and then

the attendance is recorded. Also, now if an image of a person that isn’t recognised is captured

or uploaded the person is recorded as unknown on the attendance.

92 | P a g e

It was mentioned by the people that took the survey that they wouldn’t feel comfortable with

the images being saved. So, the developer decided to try and delete images after the prediction

ran. This ended up being an easy endeavour as the os module that’s used to create folders and

files can also be used to delete them. All that needs to be done is to specify the path of the file

that you want deleted.

5.7.2 Issues that Arose

There were a few issues throughout the development of the project, there were integration

issues at first and issues with downloading attendance along with TensorFlow issues. The

integration issues were explained above, and the problem was to do with conflicting versions of

python.

In the jinja templates and even using bootstrap there wasn’t an easy way to download the

attendance within the application. If the developer had more time to spend on creating the

interface this issue could’ve been resolved as the CSS framework could’ve been changed or the

project could’ve added React to the frontend which would allow for the csv to be easily

downloaded from a table.

TensorFlow works best with a GPU and prefers to work with it. This caused a few errors to

appear as the application is being run every time it is being run. After researching why this

occurs the developer discovered it wasn’t an issue with the application but just a warning that

TensorFlow. The application still works perfectly but if the model was larger or if the application

needed to compute more, having it run on GPU would be much smoother

5.8 Implementation Summary

Throughout this chapter the application was pieced together, and an accurate model was built.

Most of the goals of this application were reached bar the issues mention prior. The model was

built and tested and tweaked until it was as accurate as it could be using this small of a dataset.

The application had integration problems that were overcame in time to create a working

prototype. The model predicts very accurately within the application and the attendance

feature works as planned.

93 | P a g e

6 Testing

Testing the application was done in multiple ways throughout implementing the project, the

testing that was undertaken can be labelled under three sections, these being functional

testing, model testing and user testing. 

• Functional testing is a type of software testing that validates the software system

against the functional requirements. The purpose of functional tests is to test each

function of the software application, by providing appropriate input, verifying the

output against the functional requirements. This mainly involves a method called black

box testing which means functions of the application is tested without knowledge of the

internal code structure, implementation details and internal paths. This testing checks

User Interface, Database, Security, Client/Server communication and other functionality

of the Application Under Test. The testing can be done either manually or using

automation. 

• The model testing is the process of evaluating the performance of a fully trained model

on a testing set. The testing set contains a collection testing samples which will be used

to see if the model can accurately predict using unknown images. The test set should be

a completely different set of images to the training set.

• The user testing was completing using surveys and asking users to test out the

application. This was done in two ways one of which was to gather pictures of people’s

faces and test if the application makes the correct prediction on known faces. The other

testing is to do it with new faces and see if it correctly tests if they are new and also add

the new faces to the dataset. This will be done in conjunction with surveys that will

contain some similar content to the survey in the requirements chapter and what their

thoughts are of the application.

6.1 Functional Testing

The functional testing that was undertaken uses the Black Box Testing technique which means

that the internal logic of the system being tested is not of interest to the tester. The tester is

only interested in whether the actual output agrees with the expected output.   This testing will

be done on the links and form features within the application.

94 | P a g e

6.1.1 Links

All links were tested and all of them go to their desired location. All of these are within the

app.py file and are rendering the correct template and running the correct functions with no

issue.

6.1.2 Client/Server Communication

The forms in this site are all just buttons for various functions and the tests for these are shown

in the table below.

 Test No Description Input Expected Output Actual Output Comment

 1 Capture image
button

Click button Image captured and
saved to folder

 Image captured and
saved to folder

 Works as
intended

 2 Stop/Start
camera feed

Click button Webcam feed
stopped or started

 It works but is slow
to do it

 Barely works

 3 Upload for
prediction

 Select
image and
click button

Correct prediction
received

 Correct prediction
received

 Works as
intended

 4 Upload to
database

 Select
image and
click button

 Uploaded to db Uploaded to db Works as
intended

 5 Attendance table
updates after
uploaded
prediction

 Check
attendance
page after
prediction

 Updated attendance
can be viewed

 Updated attendance
can be viewed

 Works as
intended

  
  

6.2 Model Testing

Testing the model was explained and demonstrated during the implementation chapter as it is

an integral part of creating a model. In this section the developer will show what was involved

in testing and which tests were done. Tests were done on the five models that are discussed in

implementation. K-fold cross validation was done as well as testing each model on ten random

images from the test set.

K-Fold cross validation is Using cross validation you do more than one split, in K-fold each of

these splits is a fold. The general process for k-fold cross validation is:

1. The entire dataset is shuffled and split into k-folds without replacement.

95 | P a g e

2. k-1 folds are used for the model training and one-fold is used for performance

evaluation.

3. This procedure is then repeated for as many times as is stated in k, for each iteration we

get a performance score,

4. The final step is to get the mean of these scores.

After the mean scores are obtained, the five models can be compared and the one with the

highest score chosen as the best and will be used. As seen in the previous chapter the fifth

model was chosen as it had the highest score. For this test 10 folds were used, and the fifth

model has the highest average at 98.4% accuracy which is very high, all of the models’ averages

were above 92% so they were all very accurate and robust models overall.

The ten-image test was less accurate as gauging which model was best as three different

models got about the same score and even the fifth model with the highest accuracy got a few

wrong here and there. For context there was multiples of this test done on each model until

they had all been tested on about 50 images each to get a solid accuracy. Even with all that

testing the third and fifth model were very close.

6.3 User Testing

There was very little user testing undertaken in this application as the user side of the

application was very small. The main user testing was taking images of my friends and using

them to train the model and getting them to take a picture in real time to see if it was correct.

This was tested on three people; it was correct for all of them and they found the application

interesting. Some feedback that was received is that they wouldn’t want their information or

images kept on file if it was a big organisation or school that was taking the images. It was

interesting to hear that they only would use the application because they trusted the developer

with their information. Another piece of feedback is that they would want to know that the

application is very high security to limit data hacks.

96 | P a g e

7 Project Management

In the following chapter the management of the project will be discussed. A project plan was

previously made to aid in reaching deadlines and working consistently over the months. This

project took place from January to May with a project proposal being submitted in December

before it. A lot of the deadlines were malleable as the developer was doing this project in more

of an iterative process rather than getting specific items done at various times. These iterations

and phases of the project are discussed in detail in the implementation and testing chapters.

7.1 Project Management Tools

The project was monitored and organised using Microsoft Planner. Every week this plan would

be reevaluated depending on what was being done and what had to be put on hold. As long

with this there was a meeting with a supervisor every week to go over progress or the project,

in these meeting due dates may be altered depending on what was most important at the time.

This project was quite research and learning heavy so that did take up quite a bit of time early

on in development.

Figure 86 Microsoft Planner

97 | P a g e

Figure 87 Planner Graphs

Figure 88 Microsoft planner graphs

Microsoft Planner has a calendar showing all the due dates and graphs to follow progress, these

were very helpful to visualize how the project was progressing. As this was the developer’s first

time wring almost completely on their schedule a lot of effort was put into using this planner to

keep on track and to consistently update and add new tasks from day to day. These mini day to

day planners were created using Tape which is a not making software that can be sorted into

collections. The collections were Daily To-do, Document To-do and Weekly To-do. Using this

made it easy to follow what was immediately needed and writing down everything helped keep

the developer organised.

98 | P a g e

To manage larger sections of notes the developer used OneNote for journaling important items

from meetings and articles. As well as documenting what had been coded that day and what

issues were occurring within the code. This helped for managing the document write up as it

meant there was already notes written down during the process compiling everything would be

simpler.

7.2 Difficulties and Reflexion

As this was the first major project the developer had to do by themself it was difficult at time to

keep up working at a steady pace. Due to conflicting projects, the developer fell quite behind at

one point in implementing the project. This happened as too much was put on their plate and

they weren’t allocating the correct amount of time to each task. After a week or so they got

back on track though. Another difficulty was to know how long a piece of functionality will take

to implement, this ended up leading to the application not being as far along as planned. The

application and model still got built to a level where the developer was satisfied but knowing

how long certain elements would take would’ve aided the process.

If this project could be started again knowing what I know now, I would’ve looked further

ahead into how this application would work on the web. This is because I spent a lot of time

studying CNN’s and deep learning and how to create a face recognition model when I could’ve

also been learning Flask. This wasn’t needed until a month or two in so the developer started

learning it then. In hindsight learning all of them together would’ve made the project run

smoother.

99 | P a g e

8 Conclusion

The main goal of this project was to create an accurate face recognition model that could take

attendance of people and integrate this into a web application. The goal of this was to create an

attendance system that could improve manual attendance taking systems. Another goal of this

was to explore how people feel about face recognition software, and how likely they would be

to use an application that employs facial recognition. The main goals of this application were

reached within the timeframe.

8.1 Summary of Chapters

At the beginning of the project, the requirements analysis was undertaken. The goal of this was

to discover the necessary feature of the application. This was done by finding similar

applications and seeing how they worked, how the models connected to applications. Other

requirements included a user survey and user research with personas. This section was integral

as one of the aims was to see how people react to this kind of application and would be the

ideal user. Requirements modeling was about describing in depth what functions the ideal

application would have and what technologies would be used along with detailing a test plan

for the project.

After the requirement’s gathering research was carried out on machine learning and how

convolutional neural networks (CNN) work. This research detailed the various layers of the

network and how they would work together to create the network and the reasoning behind

using this. Following this, research on face recognition and applications was carried out to

understand how face recognition works and how it is implemented into CNN models. The way

this can be used to aid in attendance gathering was also researched alongside the research into

the applications.

 The design chapter details how this application would function after figuring out the

requirements and researching each element for the application. The system architecture,

model architecture and user interface were designed, and it was shown how these would all

communicate together to reach the requirements of the project.

Following this the implementation of the project began. The application was built using the

Python Flask framework as the backend and using Jinja2 templates in the frontend client side of

the application. The server side contained the logic of the CNN recognition model, which was

100 | P a g e

built using Keras, and the attendance system built with the help of SQLite. OpenCV was also

used to access the webcam for use in the in application.

The following chapter was the testing chapter, which has some overlap with the

implementation chapter as a lot of the model testing takes place throughout creating the

model. This chapter also contains functional testing and user testing. The project management

chapter detailed how the project was managed and what tools were used to help this through

the development period.

8.2 Future Improvements

There are many future improvements the developer would like to see in this project. If there

was more time, the developer would implement a live feed into the application to constantly

get attendance, this was mentioned in the survey but due to time pressures was not feasible.

To achieve this a camera would either be set up in a room on its own connected to a laptop or a

raspberry PI. This would be connected to the server and every time a face was detected the

model would run on it.

Also, in future there would be an admin dashboard that would have the ability for the user to

state whether or not the predictions were correct and to run the training automatically through

the interface. In this dashboard the admin could monitor the attendance and check if the

predictions were all correct. If some were wrong, then this would be recorded, and the model

retrained.

 Another feature that could be added would be that when a prediction is made the user

confirms whether it is correct or not and if it’s wrong, they can say who they are, and that

image is sent to be trained to make the system more accurate. Also with this the user would be

able to say who they are and the correct name would be recorded for attendance.

8.3 Personal Takeaways and Project Achievements

Overall, the project achieved the main goals set out for it. It is a functioning attendance-based

face recognition system, that contains an accurate CNN model. Other achievements were that

the developer received real-life insight into how users would feel about facial recognition

technology, and how to make users more comfortable when using it. The developer also gained

a deeper understating of how to create CNN’s. This was integral to the project but is also a big

personal takeaway. The project was implemented as a web application and successfully

101 | P a g e

integrated all necessary elements within Flask. This was an achievement as it was the first time

the developer had used a Python framework and didn’t originally know how this would work.

As this project allowed for a lot of time for the developer to do work as this project was

developer-driven, a schedule had to be created, to get work done in a timely manner, which is a

crucial part of project management, and an invaluable skill learned through this project. This

project also helped with learning new soft skills, such as; knowing when a feature should be

withdrawn due to technical insufficiencies, knowing when to go back to the drawing board, and

researching alternative options if plans aren’t going as expected.

102 | P a g e

9 Bibliography

Abate, A. F., Nappi, M., Riccio, D., & Sabatino, G. (2007). 2D and 3D face recognition: A

survey. Pattern Recognition Letters, 28(14), 1885–1906.

https://doi.org/10.1016/j.patrec.206.12.018

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V.

K. (2018). The history began from alexnet: A comprehensive survey on deep learning

approaches. arXiv preprint arXiv:1803.01164.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría,

J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). (Abate et al., 2007) 8(1).

https://doi.org/10.1186/s40537-021-00444-8

Balcoh, N. K., Yousaf, M. H., Ahmad, W., & Baig, M. I. (2012). Algorithm for efficient

attendance management: Face recognition based approach. International Journal of Computer

Science Issues (IJCSI), 9(4), 146.

Bussey, D., Glandon, A., Vidyaratne, L., Alam, M., & Iftekharuddin, K. M. (2017, November).

Convolutional neural network transfer learning for robust face recognition in NAO humanoid

robot. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-7). IEEE.]

Chauhan, R. K., Pandey, V., & Lokanath, M. (2018). Smart attendance system using cnn.

International Journal of Pure and Applied Mathematics, 119(15), 675-680.

Daniyal, F., Nair, P., & Cavallaro, A. (2009, September). Compact signatures for 3D face

recognition under varying expressions. In 2009 sixth IEEE international conference on advanced

video and signal based surveillance (pp. 302-307). IEEE.

Foote, K. D. (2017, February 7). A Brief History of Deep Learning - DATAVERSITY.

DATAVERSITY. https://www.dataversity.net/brief-history-deep-learning/

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202.

https://doi.org/10.1007/bf00344251

Grossfeld, B. (2020, January 23). Deep learning vs. machine learning: a simple way to learn the

difference. Zendesk; Zendesk. https://www.zendesk.com/blog/machine-learning-and-deep-

learning/

https://doi.org/10.1016/j.patrec.206.12.018

103 | P a g e

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai,

J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition,

77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013

Gurucharan, M. K. (2020, December 7). Basic CNN Architecture: Explaining 5 Layers of

Convolutional Neural Network | upGrad blog. UpGrad Blog.

https://www.upgrad.com/blog/basic-cnn-architecture/

 Hu, G., Yang, Y., Yi, D., Kittler, J., Christmas, W., Li, S. Z., & Hospedales, T. (2015). When

face recognition meets with deep learning: an evaluation of convolutional neural networks for

face recognition. In Proceedings of the IEEE international conference on computer vision

workshops (pp. 142-150).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet Classification with Deep Convolutional

Neural Networks (AlexNet) ImageNet Classification with Deep Convolutional Neural Networks

(AlexNet) ImageNet Classification with Deep Convolutional Neural Networks.

Kulkarni, S., & Harnoorkar, S. (2020). Comparative Analysis of CNN Architectures. vol, 7,

1459-1464.

Lin, S.-H. (2000). An introduction to face recognition technology. Informing Science: The

International Journal of an Emerging Transdiscipline, 3, 1–8.

https://go.gale.com/ps/i.do?id=GALE%7CA205363359&sid=googleScholar&v=2.1&it=r&linka

ccess=abs&issn=15479684&p=AONE&sw=w&userGroupName=anon%7E34d1c40c

Letchmunan, S., Hassan, F. H., Zia, S., & Baqir, A. Detecting Video Surveillance Using VGG19

Convolutional Neural Networks

M. Coşkun, A. Uçar, Ö. Yildirim and Y. Demir, "Face recognition based on convolutional neural

network," 2017 International Conference on Modern Electrical and Energy Systems (MEES),

2017, pp. 376-379, doi: 10.1109/MEES.2017.8248937.

Paray, M., Tanquiamco, D., & Jandayan, C. (2020). Analysis and Design of Employee

Attendance Monitoring Using Face Recognition System for Archempress Fruit Corporation.

Passricha, V., & Aggarwal, R. K. (2019). End-to-End Acoustic Modeling Using Convolutional

Neural Networks. Intelligent Speech Signal Processing, 5–37. https://doi.org/10.1016/b978-0-12-

818130-0.00002-7

104 | P a g e

Prithiviraj R. (2020). Automated Attendance System based on Facial Recognition. Journal of

Advanced Research in Dynamical and Control Systems, 24(4), 124–132.

https://www.academia.edu/26763120/Automated_Attendance_System_Based_on_Facial_Recog

nition

Soltanpour, S., Boufama, B., & Wu, Q. J. (2017). A survey of local feature methods for 3D face

recognition. Pattern Recognition, 72, 391-406

Singh, S., & Prasad, S. V. A. V. (2018). Techniques and Challenges of Face Recognition: A

Critical Review. Procedia Computer Science, 143, 536–543.

https://doi.org/10.1016/j.procs.2018.10.427

Virgil Petrescu, R. V. (2019). Face Recognition as a Biometric Application. Journal of

Mechatronics and Robotics, 3(1), 237–257. https://doi.org/10.3844/jmrsp.2019.237.257

Wang, J., & Li, Z. (2018). Research on Face Recognition Based on CNN. IOP Conference

Series: Earth and Environmental Science, 170, 032110. https://doi.org/10.1088/1755-

1315/170/3/032110

Zhou, S., & Xiao, S. (2018). 3D face recognition: a survey. Human-Centric Computing and

Information Sciences, 8(1). https://doi.org/10.1186/s13673-018-0157-2

DeepAI. “Max Pooling.” DeepAI, DeepAI, 17 May 2019, deepai.org/machine-learning-glossary-

and-terms/max-pooling. Accessed 8 May 2022.

IBM Cloud Education. “What Are Neural Networks?” Ibm.com, 17 Aug. 2020,

www.ibm.com/cloud/learn/neural-networks. Accessed 8 May 2022.---.

“What Is Supervised Learning?” Ibm.com, 19 Aug. 2020, www.ibm.com/cloud/learn/supervised-

learning. Accessed 8 May 2022.

(PDF) Disaster and Pandemic Management Using Machine

https://www.researchgate.net/publication/347449937_Disaster_and_Pandemic_Management_Usi

ng_Machine_Learning_A_Survey

K-Means Clustering with Math - Towards Data Science. https://towardsdatascience.com/k-

means-clustering-for-beginners-2dc7b2994a4

https://doi.org/10.1186/s13673-018-0157-2

105 | P a g e

K-Fold | K-fold Averaging on Deep Learning Classifier. (2021, September 16). Analytics

Vidhya. https://www.analyticsvidhya.com/blog/2021/09/how-to-apply-k-fold-averaging-on-

deep-learning-classifier/

The, H. (2017, April 5). A guide to receptive field arithmetic for Convolutional Neural

Networks. Medium; ML Review. https://blog.mlreview.com/a-guide-to-receptive-field-

arithmetic-for-convolutional-neural-networks-e0f514068807

 Admin. (2021). Machine Learning and Facial Recognition. Pxl-Vision.com. https://www.pxl-

vision.com/en/blog/machine-learning-and-how-it-applies-to-facial-recognition-

technology#:~:text=Facial%20recognition%20is%20a%20technology,in%20a%20pre-

existing%20database

 Admin. (2021). Machine Learning and Facial Recognition. Pxl-Vision.com. https://www.pxl-

vision.com/en/blog/machine-learning-and-how-it-applies-to-facial-recognition-

technology#:~:text=Facial%20recognition%20is%20a%20technology,in%20a%20pre-

existing%20database

 Team, K. (2022). Keras: the Python deep learning API. Keras.io. https://keras.io/

 Machine learning education | TensorFlow. (2022). TensorFlow.

https://www.tensorflow.org/resources/learn-

ml?gclid=Cj0KCQjw1N2TBhCOARIsAGVHQc4MC9ZLnlS65agtgaC0pZdH15QaDU7jzbNmz

y7-RmZs-nL0g5lCFfcaAi3_EALw_wcB

AI. (2020). FACE RECOGNITION + ATTENDANCE PROJECT | OpenCV Python | Computer

Vision [YouTube Video]. In YouTube. https://www.youtube.com/watch?v=sz25xxF_AVE

https://www.analyticsvidhya.com/blog/2021/09/how-to-apply-k-fold-averaging-on-deep-learning-classifier/
https://www.analyticsvidhya.com/blog/2021/09/how-to-apply-k-fold-averaging-on-deep-learning-classifier/

106 | P a g e

10 Appendices

10.1 Appendix A – survey for requirements and excel answers

https://docs.google.com/forms/d/1pt8NwLwSOZao25F5VunyDfOez66dlfl5Pecgi_9sPQw/edit#r

esponses

10.2 Appendix B – user interface and system model designs

https://www.figma.com/file/MX2bXlqJwmN8SjAR8CfcJK/Untitled?node-id=0%3A1

10.3 Appendix C – code repository

https://github.com/Clareob5/Major_Project_faceRec

https://docs.google.com/forms/d/1pt8NwLwSOZao25F5VunyDfOez66dlfl5Pecgi_9sPQw/edit#responses
https://docs.google.com/forms/d/1pt8NwLwSOZao25F5VunyDfOez66dlfl5Pecgi_9sPQw/edit#responses
https://www.figma.com/file/MX2bXlqJwmN8SjAR8CfcJK/Untitled?node-id=0%3A1

107 | P a g e

10.4 Appendix D – Interim Presentations

 Interim Presentations

10.5 Appendix E – Microsoft Planner

https://tasks.office.com/iadt.ie/Home/PlanViews/3ndrnd_u_ESUUcb5xwI6QZYAEflB?Type=Pl

anLink&Channel=Link&CreatedTime=637876446629400000

https://iadt-my.sharepoint.com/:f:/g/personal/n00180771_iadt_ie/Ep31z8GnnkNOil14U-IwvFwBfccw065DiBEvwBAEPVFcAQ?e=ebB4hl
https://tasks.office.com/iadt.ie/Home/PlanViews/3ndrnd_u_ESUUcb5xwI6QZYAEflB?Type=PlanLink&Channel=Link&CreatedTime=637876446629400000
https://tasks.office.com/iadt.ie/Home/PlanViews/3ndrnd_u_ESUUcb5xwI6QZYAEflB?Type=PlanLink&Channel=Link&CreatedTime=637876446629400000

