
Submission date: 08-May-2022

File name: Craig-Redmond-N00171313-Thesis.pdf

Word count: 24090

Character count: 145702

FundNest - A mobile application with
open banking solutions to assist
financial management

by Craig Redmond

FundNest - A mobile application with open banking solutions to assist
financial management

Author: Craig Redmond N00171313

Supervisor: Marian McDonnell

Second Reader: Anne Wright

Project Coordinator: Mohammed Cherbatji

Code: github.com/Craigr99/major-project-fundnest

Date: May 2022

Thesis submitted in partial fulfilment of the requirements for the BSc (Hons) in Creative

Computing at the Institute of Art, Design and Technology (IADT).

Craig Redmond N00171313

Declaration of Authorship
I hereby certify that the material, which I now submit for assessment is entirely my own work

and has not been taken from the work of others except to the extent of such work which has

been cited and acknowledged within the text of my own work.

Declaration

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own work.

Signed:

Date: 08/05/2022

Craig Redmond N00171313

Abstract
This document includes the research into the area of user experience within mobile banking
applications. The research section of this document delves into the history of E-banking and
techniques that can be used to enhance the user experience within these types of applications
such as gamification and personalization. It then explores the topics of user experience design
(UXD), user experience within mobile and banking applications, as well as the struggle that
can be found with balancing security with a positive user experience. The goal of this project
is to design and implement a mobile application to assist users with financial management.
To conquer this task, a great deal of research and design went into the features that the app
provides. The app allows users to link multiple accounts from one or more financial
institutions to the application, analyse their income and expenditure from each account, set
up and personalize custom saving goals and track bills and subscriptions that need to be paid.
One key purpose of this application is to act as a tool for users to manage their finances, with
an easy to use interface and a positive user experience to users which some Irish banking
applications currently lack due to a lack of features and design flaws. The final application is
built using the MERN stack, with the frontend (mobile app) developed using React Native, the
database is hosted on MongoDB and the backend/server is hosted on Heroku. The Nordigen
API is used to access account data and transaction categorization. Nordigen is a free open
banking platform.

Craig Redmond N00171313

Acknowledgements
I would like to thank my project supervisor Marian McDonnell first of all for providing
guidance and support continuously throughout the course of the project. The experience and
knowledge that Marian has in this area aided a variety of my skills and had a positive impact
on the quality of my final project. I would like to thank my second reader Anne Wright for
taking her time to provide her invaluable feedback and observations on the project.

I would like to thank Mohammed Cherbatji for his organisation of the Major Project. I would
like to thank all of my lecturers who I have had the privilege to learn from over the years in
IADT for providing me with an indispensable skillset.

I would lastly like to thank my family, who have provided support and guidance throughout
each of the last four years, for keeping me motivated which allowed me to work hard and
accomplish my goals that were set out throughout the years.

Table of Contents

Table of Contents

1 INTRODUCTION .. 3

2 RESEARCH .. 5

EXAMINING HOW THE USER EXPERIENCE AND GAMIFICATION TECHNIQUES CAN ASSIST USERS
WITH FINANCIAL MANAGEMENT WITHIN MOBILE BANKING APPLICATIONS 5

2.1 E-BANKING ... 5
2.1.1 HISTORY OF E-BANKING ... 5
2.1.2 GAMIFICATION OF E-BANKING .. 5
2.2 USER EXPERIENCE .. 6
2.2.1 ELEMENTS OF USER EXPERIENCE... 6
2.2.2 BALANCE BETWEEN UX AND SECURITY .. 6
2.2.3 UXD FOR MOBILE ... 7
2.3 USER EXPERIENCE IN E-BANKING APPLICATIONS ... 8
2.4 FUTURE DIRECTIONS OF ONLINE BANKING ... 8
2.5 CONCLUSION ... 9

3 REQUIREMENTS ANALYSIS.. 10

3.1 INTRODUCTION .. 10
3.2 EXISTING APPLICATIONS .. 10
3.2.1 REVOLUT ... 10
3.2.2 MINT: ... 12
3.2.3 MONEFY .. 14
3.3 SURVEYS ... 16
3.4 USER PERSONAS .. 19
3.5 USE CASE DIAGRAMS .. 21
3.6 REQUIREMENTS ... 23
3.6.1 USER REQUIREMENTS .. 23
3.6.2 TECHNICAL REQUIREMENTS .. 24
3.6.3 FUNCTIONAL REQUIREMENTS .. 24
3.6.4 NON-FUNCTIONAL REQUIREMENTS .. 24
3.7 FEASIBILITY STUDY.. 25
3.8 PROJECT PLAN ... 26

4 DESIGN .. 28

4.1 INTRODUCTION .. 28
4.2 SYSTEM ARCHITECTURE ... 28
4.3 APPLICATION DESIGN.. 29
4.3.1 TECHNOLOGIES ... 29
4.3.2 DESIGN PATTERNS ... 30
4.3.3 PROCESS DESIGN .. 32

4.4 USER INTERFACE DESIGN ... 36
4.4.1 WIREFRAME ... 36
4.4.2 STYLE GUIDE .. 41
4.5 CONCLUSION ... 41

5 IMPLEMENTATION ... 43

5.1 INTRODUCTION .. 43
5.2 DEVELOPMENT ENVIRONMENT ... 43
5.3 DATABASE .. 44
5.4 BACKEND .. 45
5.4.1 CONFIGURATION – ENVIRONMENT VARIABLES ... 45
5.4.2 APPLICATION CONFIGURATION & SCRIPTS ... 45
5.4.3 APP/SERVER INITIALIZATION ... 45
5.4.4 INDEX FILE – APP ENTRY POINT .. 46
5.4.5 APP STRUCTURE.. 47
5.4.6 LINKING AN ACCOUNT.. 49
5.4.7 RETRIEVING ACCOUNTS .. 53
5.5 FRONTEND .. 55
5.5.1 PROJECT DEPENDENCIES... 56
5.5.2 PARENT COMPONENT .. 57
5.5.3 AUTHENTICATION SCREENS ... 59
5.5.4 LINKING BANK ACCOUNTS .. 63
5.5.5 HOME SCREEN – USER INDEX .. 73
5.5.6 SAVINGS SCREEN – INDEX ... 75
5.5.7 SAVINGS SCREEN – SHOW .. 78
5.5.8 TRANSACTIONS SCREEN – INDEX .. 79
5.5.9 SWITCHING ACCOUNTS .. 83
5.5.10 ADD ITEM SCREEN ... 85

6 TESTING ... 86

6.1 INTRODUCTION .. 86
6.2 FUNCTIONAL TESTING ... 86
6.2.1 AUTHENTICATION .. 87
6.2.2 NAVIGATION .. 88
6.2.3 CALCULATION ... 88
6.2.4 ANALYSIS OF FUNCTIONAL TESTS ... 89
6.3 USER TESTING ... 90
6.3.1 TEST PARTICIPANTS ... 90
6.3.2 TEST ENVIRONMENT .. 91
6.3.3 TEST METHODS .. 91
6.3.4 USER TESTING TASKS & RESULTS ... 91
6.4 CONCLUSION ... 93

7 PROJECT MANAGEMENT .. 94

7.1 GITHUB .. 95
7.2 JOURNAL .. 97

7.3 CONCLUSION ... 97

8 CONCLUSION ... 98

8.1 PROJECT SUMMARY.. 98
8.2 FUTURE WORK .. 98
8.2.1 SAVINGS FEATURE INTEGRATED INTO REAL BANK ACCOUNTS ... 99
8.2.2 CURRENT FEATURES ENHANCED ... 99
8.2.3 MODIFICATIONS FROM USER TESTING RESULTS .. 99
8.2.4 FURTHER USER TESTING ... 99
8.2.5 PROVIDING SUPPORT FOR MULTIPLE COUNTRIES ... 99
8.2.6 PROVIDING THE APP FOR DIFFERENT MOBILE DEVICES .. 100
8.3 LIMITATIONS ... 100
8.4 LEARNING OUTCOMES .. 100
8.5 FINAL WORDS ... 101

9 REFERENCES ... 102

10 APPENDICES ... 104

10.1 APPENDIX A (SURVEY) .. 104
10.2 APPENDIX B (PAPER PROTOTYPES) .. 106
10.3 APPENDIX C (SURVEY DOCUMENTS) .. 109
10.3.1 TEST INTRODUCTION ... 109
10.3.2 CONSENT FORM.. 110
10.3.3 TEST TASKS .. 111
10.3.4 POST-TEST QUESTIONNAIRE ... 112
10.3.5 TESTING NOTES .. 113

Table of Figures

Table of Figures
FIGURE 1 REVOLUT SCREENS DESIGN .. 11
FIGURE 2 MINT SCREENS DESIGN ... 13
FIGURE 3 MONEFY SCREENS DESIGN ... 15
FIGURE 4 SURVEY AGE CATEGORIES ... 16
FIGURE 5 SURVEY GENDERS ... 16
FIGURE 6 SURVEY USERS FINANCIAL DIFFICULTIES ... ERROR! BOOKMARK NOT DEFINED.
FIGURE 7 SURVEY LEARNING TYPES .. 17
FIGURE 8 SURVEY PREFERRED BANKING APPS .. 17
FIGURE 9 SURVEY BUDGETING TOOLS .. 18
FIGURE 10 SURVEY CONFIDENCE LEVELS ... 19
FIGURE 11 USER PERSONA .. 20
FIGURE 12 USE CASE DIAGRAM 1 ... 22
FIGURE 13 USE CASE DIAGRAM 2 ... 23
FIGURE 14 FLUTTER ... 25
FIGURE 15 REACT NATIVE ... 26
FIGURE 16 MERN STACK .. 26
FIGURE 17 PROJECT PLAN SCHEDULE .. 27
FIGURE 18 MICROSOFT TASKS PLANNER .. 27
FIGURE 19 SYSTEM ARCHITECTURE DESIGN .. 29
FIGURE 20 SYSTEM DESIGN PATTERN .. 30
FIGURE 21 REDUX ARCHITECTURE - HTTPS://WWW.JAVATPOINT.COM/REACT-REDUX .. 32
FIGURE 22 NORDIGEN CUSTOMER JOURNEY ... 33
FIGURE 23 CLASS DIAGRAM .. 34
FIGURE 24 SEQUENCE DIAGRAM .. 35
FIGURE 25 FLOW CHART - LOGGING INTO ACCOUNT ... 35
FIGURE 26 FLOW CHART - ADDING A NEW SAVING GOAL... 36
FIGURE 27 AUTHENTICATION WIREFRAMES .. 36
FIGURE 28 FIRST ITERATION OF MAIN SCREENS .. 37
FIGURE 29 SECOND ITERATION OF SCREENS .. 38
FIGURE 30 DIFFERENT DESIGN OF HOME SCREEN ... 39
FIGURE 31 ADD & EDIT SAVING GOAL SCREENS .. 40
FIGURE 32 STYLE GUIDE ... 41
FIGURE 33 DEVELOPMENT ENVIRONMENT WORKFLOW ... 44
FIGURE 34 MONGODB CLUSTER .. 44
FIGURE 35 ENVIRONMENT VARIABLES ... 45
FIGURE 36 PACKAGE.JSON FILE .. 45
FIGURE 37 SERVER JS FILE ... 46
FIGURE 38 INDEX.JS CONFIGURATION .. 46
FIGURE 39 INDEX FILE - RUNNING SERVER ... 47
FIGURE 40 USERS ROUTER .. 47
FIGURE 41 USER CONTROLLER - LOGIN FUNCTION .. 48
FIGURE 42 USERS DAO – GETUSER().. 49
FIGURE 43 TESTING ENDPOINTS IN INSOMNIA ... 49
FIGURE 44 ACCOUNTS ROUTER .. 49
FIGURE 45 ACCOUNTS CONTROLLER - ADD FUNCTION .. 50
FIGURE 46 RETRIEVING ACCOUNTS ... 50
FIGURE 47 GETTING ACCOUNT DETAILS .. 51
FIGURE 48 ACCOUNTS DAO - ADD ACCOUNT ... 52
FIGURE 49 RETURNING RESPONSE WITH ACCOUNTS ... 52
FIGURE 50 SUCCESSFUL REQUEST ... 53
FIGURE 51 ACCOUNTS CONTROLLER - GET ACCOUNTS ... 53
FIGURE 52 ACCOUNTS DAO – GETACCOUNTSBYEMAIL .. 54
FIGURE 53 SUCCESSFUL GET ACCOUNTS RESPONSE.. 55

https://iadt-my.sharepoint.com/personal/n00171313_iadt_ie/Documents/Year%204/Major%20Project/thesis/v3_CraigRedmond-thesis-draft.docx#_Toc102228295
https://iadt-my.sharepoint.com/personal/n00171313_iadt_ie/Documents/Year%204/Major%20Project/thesis/v3_CraigRedmond-thesis-draft.docx#_Toc102228296
https://iadt-my.sharepoint.com/personal/n00171313_iadt_ie/Documents/Year%204/Major%20Project/thesis/v3_CraigRedmond-thesis-draft.docx#_Toc102228324

FIGURE 54 NATIVEBASE THEMES - HTTPS://WWW.NPMJS.COM/PACKAGE/NATIVE-BASE .. 56
FIGURE 55 FRONTEND DEPENDENCIES ... 57
FIGURE 56 PARENT - APP COMPONENT ... 57
FIGURE 57 CUSTOM THEME CONTAINER .. 58
FIGURE 58 SCREENS STACK ... 59
FIGURE 59 DEVELOPMENT OF FIRST SCREENS ... 60
FIGURE 60 KEYBOARD AWARE SCROLL VIEW ... 61
FIGURE 61 KEYBOARD BLOCKING PASSWORD INPUT ... 61
FIGURE 62 REGISTER COMPONENT ... 61
FIGURE 63 REGISTER FUNCTION ... 62
FIGURE 64 BANKS LIST COMPONENT ... 63
FIGURE 65 BANKS LIST JSX ... 64
FIGURE 66 LIST OF BANKS ... 64
FIGURE 67 SELECTBANK FUNCTION ... 65
FIGURE 68 USER AGREEMENT SCREEN ... 65
FIGURE 69 CREATEAGREEMENT FUNCTION ... 66
FIGURE 70 CONDITIONALLY RENDERING ... 67
FIGURE 71 ONREFRESH FUNCTION .. 67
FIGURE 72 LIST ACCOUNTS FUNCTIONS .. 68
FIGURE 73 GETACCOUNTS FUNCTION .. 69
FIGURE 74 CONDITIONALLY RENDER ACCOUNT .. 69
FIGURE 75 SELECT ACCOUNT SCREEN .. 70
FIGURE 76 SELECTACCOUNT FUNCTION .. 71
FIGURE 77 ACCOUNT ADD SUCCESS SCREEN .. 72
FIGURE 78 HOME SCREEN ... 73
FIGURE 79 USER INDEX COMPONENT .. 74
FIGURE 80 LOGOUT FUNCTION ... 74
FIGURE 81 SAVINGS INDEX SCREEN ... 75
FIGURE 82 FUNCTIONS TO CALCULATE TOTALS... 75
FIGURE 83 CURRENCY FORMATTER FUNCTION ... 76
FIGURE 84 PERCENTAGE FUNCTION ... 76
FIGURE 85 SAVINGS INDEX - GETSAVINGS() .. 77
FIGURE 86 SAVINGS SHOW SCREEN ... 78
FIGURE 87 TRANSACTIONS INDEX SCREEN .. 79
FIGURE 88 TRANSACTIONS INDEX - USEEFFECT HOOK & GETTRANSACTIONS .. 80
FIGURE 89 GETACCOUNTBALANCE FUNCTION ... 80
FIGURE 90 TRANSACTIONS LOOP .. 81
FIGURE 91 TRANSACTION ICON COMPONENT .. 82
FIGURE 92 TRANSACTIONS MARKUP ... 82
FIGURE 93 ACCOUNT SELECTION .. 83
FIGURE 94 GETACCOUNTS FUNCTION .. 84
FIGURE 95 ACCOUNT LOOP IN ACTION SHEET ... 84
FIGURE 96 SELECT ACCOUNT FUNCTION .. 85
FIGURE 97 ADD ITEM SCREEN .. 85
FIGURE 98 MICROSOFT PLANNER ... 95
FIGURE 99 GITHUB BRANCHES .. 95
FIGURE 100 GITHUB REPOSITORY .. 96
FIGURE 101 COMMITS MADE TO THE REPOSITORY OVER 3 MONTHS .. 96
FIGURE 102 BANK LIST FOR IRELAND .. ERROR! BOOKMARK NOT DEFINED.

https://iadt-my.sharepoint.com/personal/n00171313_iadt_ie/Documents/Year%204/Major%20Project/thesis/v3_CraigRedmond-thesis-draft.docx#_Toc102228354

Introduction 3

1 Introduction

This project focuses on the elements of User Experience (UX) and User Experience Design
(UXD) in E-Banking applications. The development of UX design for mobile apps has evolved
enormously in recent years and has made these apps accessible and easy to use for most
users. However, some users still struggle with mobile banking apps. The research section of
this document initially delves into and then explores a brief history of e-banking, and the
gamification of e-banking. A section of the literature review discusses the techniques of
gamification that are used in the internet banking industry and how they can have an impact
of the user experience. The research then focuses mainly on specific topics of user experience
– elements of UX, how the balance between a positive user experience and security elements
can be challenging, and some general practices for designing good user experiences for
applications on mobile devices.

There are as many as 1.9 billion individuals who use e-banking applications as of 2020 (Statista
Research Department, 2021), therefore it is important to understand how to design a good
user experience for banking application as it can increase customer loyalty and the demand
for mobile banking applications will increase over the next few years as it looks to be the
future of finance.

FundNest is a mobile application that aims to assist users with financial management. This
application provides users with various features with a goal to provide each user with a
positive user experience. FundNest is a platform where users can register an account and link
multiple accounts from existing financial institutions to the application with a simple
authentication flow. From here, users can display, manage and analyse their banking
information in a minimalistic designed user interface, to make the financial figures easy for
all types of users to understand.

One of the primary goals of the application is to make it easy for users to manage their
finances and savings. For this reason a lot of thought and research went into the design and
development of the apps main features. A valuable feature is provided to allow users to set
up saving goals, where the user defines the saving goal name and amount. For example if a
user would like to save up for a new car they can define a goal for this which includes the goal
amount. This feature implements personalization aspects allowing the user to choose an icon
and colour for the goal. The concept for this feature was so that the user could transfer funds
to and from these saving goals from their main bank accounts balance until they have reached
their goal. The user could then be rewarded with feedback from the application which
implements a gamification feature, which would make saving more enjoyable.

FundNest has different sections within the application, with each section providing simple
design and functionality, to make it easy for each user to use and understand. For this reason,
a lot of research and design iterations went into the design phase of the application.

The application was developed using various tools and frameworks. The mobile app
(frontend) was developed using the React Native framework, which is a framework provided
by React, that allows developers to create native mobile applications – for both Android and

Introduction 4

iOS. React Native is written in JavaScript and was created and is maintained by the company
Meta, formerly Facebook. The backend of the application, various technologies were adopted
such as NodeJS and Express for the server and MongoDB for the database provider. These
technologies combined make up the MERN stack (MongoDB, Express, React, Node).

For the project management aspect of the project, agile and SCRUM methodologies were
used. This helps provide a simple schedule throughout the project development timeline,
which makes it easy to organise time efficiently and develop a structured application. The
SCRUM methodology is where the project is split up into different sprints, each one lasting
one to two weeks. Within each sprint, work is performed on different items from the product
backlog. Sprints are continued until the project deadline has passed. This project was
developed in 8 sprints overall, over a period of 4 months, which can be seen in more detail in
the project management section of this document. The SCRUM methodology is used by
software companies to take an organized approach in project management.

This document is structured as follows – Chapter 2 discusses the research that went into the
areas of mobile banking and user experience design in mobile and E-banking applications.
This was a literature review on how the user experience and gamification techniques can
assist users with financial management. Chapter 3 discusses the requirements analysis of the
application, where research into similar applications was performed and the requirements of
the application was defined. Chapter 4 describes the design of the application including the
system architecture and user interface design. Chapter 5 is the implementation chapter,
which discusses how the outlined designs were implemented. Chapter 6 is the testing chapter,
which discusses user and functional testing and the analysis on each. Chapter 7 discusses how
the project was managed overall using SCRUM methodologies. Chapter 8 discussed the
limitations encountered throughout the development of the app and the future development
ideas that could be undertaken. Chapter 9 is the conclusion chapter of the project, where the
project is summarised and conclusions about the concept of the projects idea is discussed.

The following chapter is a literature review that was completed which includes research of
online literature that was available in the areas of mobile banking and User Experience
Design.

Research 5

2 Research

Examining how the user experience and gamification techniques can
assist users with financial management within mobile banking
applications

2.1 E-Banking

2.1.1 History of E-Banking

E-Banking is the term that describes customers using the internet to access services for their
bank accounts and the banking transactions that take place online. It can involve the facilities
such as account access, fund transfers, and the ability to buy financial services or products
online. Financial institutions began implementing e-banking services in the mid 1990’s,
however many consumers were hesitant to conduct transactions over the internet. It took a
few years for these services to gain adoption and by 2000, 80 percent of U.S banks offered e-
banking services to customers (Keivani, Jouzbarkand, Khodadadi, & Sourkouhi, 2012). It took
well-renowned companies such as Amazon, eBay and America Online to make the idea of
paying for items online widespread. In 2001, Bank of America became the first bank to reach
3 million online banking customers, which was more than 20 percent of its customer base.
Their customers made a record 3.1 million electronic bill payments by the end of 2001, which
totaled more than $1 billion. In 2009, a Gartner Group report estimated that 47 percent of
the U.S population of adults and 30 percent of the United Kingdom banked online (Batchelor,
2017). The rise and development from the past to present has been rapid, and as of 2020, as
many as 1.9 billion users worldwide actively used online banking services, with this number
forecast to reach 2.5 billion by 2024 (Statista Research Department, 2021).

In 2017, 58% of the Irish population used mobile banking and this figure was expected to
reach over 70% by 2024. These numbers have drastically increased since then due to some
factors. Like numerous other aspects of the world, Covid-19 has prompted a change in
peoples banking habits. For much of the year in 2019 to 2020 people did not have access to
bank branches. Everyone had to use online banking for their banking activities. In 2021, 78%
of users do their banking online and 60% do their banking on mobile devices (Hennessy,
2021). Due to the increase of users adopting online banking, banks across Ireland have begun
downsizing - Bank of Ireland are set to close more than 100 branches across the country and
Ulster Bank have decided to shut down indefinitely. This has resulted in banks being required
to offer better digital services for their users everyday banking needs.

2.1.2 Gamification of E-Banking

Gamification has gained popularity in certain industries such as in education and healthcare
and has started being brought into the area of banking in recent years. Gamification is the
term used to describe the game principles and mechanics being applied to something to
motivate and encourage their users to perform specified activities or change the behavior of
a group. These methods appeal to natural human desires and impulses such as the need for
entertainment, fun, reward, and competition (Babrovich, 2017). The adoption of gamification

Research 6

in e-banking has the potential to change the customers attitude towards money and finance
by making financial management fun, and to encourage better behaviors and attitudes
towards things such as increasing savings and investments. There are numerous methods that
developers can follow to implement gamification in banking, some examples include the
BBVA banks game that has a goal to promote the use of online banking, by allowing their
users to win points by using their services that they can exchange for gifts and entries to prize
draws (Rodrigues, Oliviera, & Costa, 2016).

These elements of gamification can influence the enjoyment and ease-of-use on the
application and will result in a positive user experience overall. The social cues and ease of
use which online games comprise sometimes result in the users the users playing the same
game repeatedly, almost to the point of addiction, and it has been found that these cues could
lead users to increase their commitment to online business applications, such as an e-banking
app. Some attention should be paid to some factors in the worldwide financial situations -
some users may have experienced financial losses due to some financial factors, such as the
global financial crisis between 2007 and 2009, where many banks around the world incurred
large losses and relied on government support to avoid bankruptcy. These factors may have
led to a decrease in their confidence in banking in general. Variables that must be paid
attention to are usefulness, socialness, ease of use and enjoyment, as getting these factors
correct, will inevitably make the bank user confident using the system. There is a lot of
potential in gamification in banking, such as the potential to simplify the perception of
complex banking products and services, gather data insights about customers and the
possibility to increase financial literacy among customers and their kids (Babrovich, 2017).

2.2 User Experience

2.2.1 Elements of user experience

User Experience (UX) consists of all aspects of interaction between a user and a product. User
Experience Design (UXD) is the process that design teams use to create products such as a
mobile app that will provide meaningful experiences for the user. (The Interaction Design
Foundation, 2021). There are numerous design principles that designers follow to create
products with a good user experience. There are multiple factors that contribute to the user
experience, for example if a person is reading a book or an article, the experience can be
ruined by reading a tiny font that can be uncomfortable on your eyes, or if a persons is using
an app, the app forgetting where they last stopped reading can be frustrating to users (Perea
& Giner, 2017). The main topic related to UX is User Interface (UI). The UI refers to a system
and a user interacting with each other through commands or techniques to perform
operations, use contents and input data. The user interfaces can range from desktop
computers to mobile devices and games (Joo, 2017). The focus of the research is on user
interface and user experience design for mobile applications, as many of the modern e-
banking applications are now on mobile devices.

2.2.2 Balance between UX and security

When designing an e-banking application, maintaining a balance between security and a
positive user experience can prove a challenge. It is apparent that the various forms of
security can hinder a user’s experience, such as the authentication methods when logging
into a banking app taking time for the user. However according to the work of Svilar &

Research 7

Zupančič (2016), many users suggested that security and usability are the most important
features in banking apps, and the less important features that followed were ease of use,
responsiveness, reliability, and accessibility (Svilar & Zupančič, 2016). This implies that the
security of online banking apps is more important to the user than the design or interface.
Users are more cautious when using banking applications, so they want to be sure that their
finances are safe and secure. The users agree that additional passwords are necessary and
that banking applications are useful products and are easy to use and learn. Reducing the
numbers of steps involved in the authentication process is important in maintaining a good
user experience. According to Krol, Philipou, De Cristofaro and Sasse (2015), an ideal process
when authenticating a user would require fewer steps and not demand the use of additional
devices for one-time passwords.

In the last few years, the use of biometric data has been used to authenticate users on
devices. Biometric data is anything that relates to the measurement of peoples features and
characteristics. This data is used to prove a person’s uniqueness and verify if a person is who
they are (GoodID team, 2021). For example, fingerprints and facial recognition is now being
used in modern smartphones to unlock them. Banking institutions have begun integrating
these technologies into their applications. For example, Revolut uses the user’s biometric
data such as Face ID or fingerprints to login to the app. Many FinTech analysts predict that
the PIN number method of authentication may become obsolete within the next few years
with the advancement of this technology (Clearbridge Mobile, 2018). Using passwords and
PIN numbers as the main security method makes them an easy target for fraud. With the
advent of multi-factor authentication, which combines a user's fingerprint with a variety of
factors such as voice or facial recognition, it's becoming more prevalent to use this method in
the banking industry. With the advancement in these new technologies, the UX and security
is enhanced for users.

2.2.3 UXD for Mobile

Mobile UX design is the design of user experiences for handheld and wearable devices.
Designers create solutions to meet mobile users’ restrictions and requirements. The focus is
on accessibility, ease of use, and efficiency to optimize on the go interactive experiences (The
Interaction Design Foundation, 2014). The success of an application is related to the degree
of the user’s acceptance. User Experience Design (UXD) plays an important role the
development of mobile applications because it can have a huge influence on a products
success or failure. There are many factors to consider when developing a mobile application.
In the study carried out by Yazid and Jantan (Azwa & Azrul, 2017), they presented a UXD
strategy for creating a mobile flight booking application under different headings such as ease
of use, learnability, user interface, security, user satisfaction and behavioral intent. These
headings can be used as a UX strategy for designing any type of mobile application because
each of them can contribute to a good user experience in a mobile application.

Ease of use elements could be divided into different sub elements that cover navigation,
usability, and data accessibility. Usability is how the application can serve the user to achieve
the specified goals in the specified context of use. The actions to navigate through an app
should be memorable to the user for when the return to an app, the step count should be
minimized to simplify a process. The design of the navigation should be intuitive, predictable,
and consistent. When designing a user interface for mobile devices there are some challenges

Research 8

that are posed. Compared to a computer screen, when designing on smaller mobile screens,
a higher percentage of the screen must be devoted to text in order to make it easily legible,
which can sometimes leave less room for illustrations or visual enhancements on screen
design. It is important to think about these factors when designing for mobile screen sizes.
Developers must think about content prioritization – the goal is to satisfy most of the user’s
needs, but not include any unnecessary that may negatively impact the mobile UX, especially
elements that will increase page load time due to a slow network (Enginess, 2016).

2.3 User Experience in e-banking applications

Internet banking has changed the way consumers carry out their banking activities. Most of
these activities are now done through mobile devices. This was not always the case however,
as when mobile banking apps started being used back in 2009, most of these applications
were not native mobile applications, but were instead web apps that allowed the user to
access the internet banking features on a mobile device (Meadows, 2019). More customers
are beginning to use online banking services as technology develops, but there are still some
barriers to the usage of e-banking including the perception of risks and the understanding of
the benefits of e-banking. It has been found that a good way to make customers engaged with
the applications is through user experience elements such as personalized services as the
banking preferences of customers keep changing (Wang, Cho, & Denton, 2017).

Personalization increases digital engagement of users. People are inclined to use an app more
if they can customize it the way they want it. This is more about the functionality and features
that the user gets out of the app and the experience rather than changing colors or
background photos. An example would be what screen should the user see when they login,
what order the accounts are in etc. These contribute to a good user experience in e-banking
(Meadows, 2019). It is important to have an application that the user perceives as easy to
use, as if the user finds the service difficult to use, they will find a different way to make
transactions. The more difficult an app is to use, the more unlikely it is that a user will want
to use it (Rahi, Ghandi, & Alnaser, 2017). The users that are more inexperienced with e-
banking in general have indicated that personalization allows them to find more utility in their
experience in e-banking applications according to the results of Wang, Cho, and Denton’s
(2017) research.

According to a study by Amin et al. it is clear that perceived usefulness of an application is a
big predictor factor for trust in e-banking. This means that the usability of the technology is
important in gaining the users satisfaction and loyalty (Amin, Rezaei, & Abolghasemi, 2014).

2.4 Future Directions of Online Banking

Due to the constantly evolving technologies, there will be more changes in the future to
internet banking industry than ever before. The user experience in banking will be
significantly affected by the development of Artificial Intelligence. This will be noticeable
through the delivery of mass personalization and assisting customers to overcome lower
levels of financial literacy (KPMG, 2019). KPMG are suggesting that by 2030, algorithms and
data models will be built around optimizing financial outcomes for customers and will
reinforce positive behaviors through “nudging” people to do certain things. An example of
this would be preventing customers from making poor financial decisions. It is also predicted

Research 9

that by 2030 everything will be connected. Carrying a plastic card to tap at dedicated points
of sale or making mobile payments might be replaced by a secure voice command or facial
expression. Another future direction in this area will be the simplification of banking.
Customers now expect straightforward, easy to use digital experiences from their service
providers. Users can buy from Amazon with a click, get instant access to music on Spotify etc.
and they will expect similar experiences from their financial providers. To remain relevant to
the competition, banks will move in the direction of offering simple, easy to use, customer-
centric digital banking apps. We are likely to see the user experience become simplified, which
will be designed around real-life customer journeys to get rid of the friction from the user
experience and enable customers to move across digital and physical banking channels
seamlessly (Finextra Editorial Team, 2019).

2.5 Conclusion

Many of the research studies carried out in the area of e-banking and user experience indicate
that there is a lot of potential for future directions of internet banking. The modernization
and principles in current user experience design patterns will be important to users in their
mobile banking apps. It is important that the users can have a positive and intuitive
experience on the apps and that they can perform some sort of personalization. Nonetheless,
it is important that these banking apps will have good security features so that the user can
feel safe and secure while using the app, so it may always be a challenge to have a positive
fluid user experience in applications involving finance, but research suggests that having more
security elements will always be more important than the user experience, so it is a
compromise that is worth it.

Requirements Analysis 10

3 Requirements Analysis

3.1 Introduction

Requirement gathering is performed to determine what the project needs to achieve and
what needs to be created to make that happen. This is achieved by the process of generating
a list of different requirements such as functional, technical, non-functional and user
requirements.

3.2 Existing Applications

Numerous mobile banking and budgeting apps were analyzed to see what features they offer
and the pros and cons of each app. The following apps were analyzed:

1. Revolut
2. Mint
3. Monefy

Each app’s features were analyzed to see if they provided a good user experience.

3.2.1 Revolut

Features:

• Spending categorized by the type of transaction (shopping, restaurants etc.)

• Set monthly budgets and spending goals, for overall and different categories

• Link multiple accounts

Pros:

• User interface

• Expanding range of features

• Premium subscriptions with handy perks

• Can top up and hold several currencies

• Free

Cons:

• Poor customer support

• Customers' accounts can be frozen temporarily due to security reasons

• Certain services can only be accessed with premium subscription memberships

Requirements Analysis 11

Screenshots:

Figure 1 Revolut Screens Design

Requirements Analysis 12

3.2.2 Mint:

Features:

• Connect multiple accounts – from cash to credit card, loans and investments

• Simple UI so you can see your complete financial picture clearly

• Track cash flow – adding bills and subscriptions, users get notified when subscription
costs increase and when bills are due

• Save smarter with custom budgets – categorized transactions

Pros:

• Free

• Ease of use

• Link multiple accounts

• Credit score – users are notified of any changes in their report

• Trusted by millions of users

• Security – 4-digit code, touch ID. Users can delete account information remotely

Cons:

• In app advertisements

• Doesn’t support multiple currencies

• Can’t assign multiple savings goals to one account

• Only available in US and Canada

Requirements Analysis 13

Screenshots:

Figure 2 Mint Screens Design

Requirements Analysis 14

3.2.3 Monefy

Features:

• Breaks down expenses in a simple, intuitive, and understandable way

• Lightning-fast tracking – add or remove expenses within a few seconds by tapping “+”
or “-” button, enter amount and select category. Or tap the category icon on the chart
and hit add

• Fully customizable – comes with many default categories, however a user can add
custom categories

Pros:

• Free

• Nice user interface: Displayed in a chart

• Easy to use – quickly add and remove expenses with clear call-to-action buttons

• Detailed overview of categorized expenses

Cons:

• Each expense needs to be entered manually

• Possibly limited functionality

Screenshots:

Requirements Analysis 15

Figure 3 Monefy Screens Design

Requirements Analysis 16

3.3 Surveys

A survey was completed by 68 users that related to online banking in order to get a better
idea of the users’ requirements for mobile banking applications. This survey could then be
used to create user personas and user journeys, and to see what functionality was most
important for this type of application.

Figure 4 Survey age categories

From the survey results, the respondents belonged to varying age groups, most of them being
younger users from the age 16-24 and 25-44 (Figure 4).

Figure 5 Survey genders

Most users participating in this survey were female as shown in Figure 5 above. As shown in
these pie charts in Error! Reference source not found., it is noticeable that users sometimes
find it difficult to manage their finances and that they find banking applications difficult to use
at times. There could be some correlation here between the two. As shown in Figure 6 below,
most users tend to be visual learners and therefore having a well-designed application with a
pleasing user experience should assist users in learning how to use the application quickly and
finding it easier to complete their tasks.

Requirements Analysis 17

Figure 6 Survey learning types

When users were asked what their preferred banking app to use is, most people answered
‘Revolut’ and ‘AIB’ in Figure 7. This is most likely because both apps have a well-designed user
interface and make it easy for users to use and grasp the information on the screen.

Figure 7 Survey preferred banking apps

While trying to specify the requirements for the application, the users were asked if they use
any form of digital budgeting tool for financial planning. Most users answered ‘No’ to this
question and the users that do use a budgeting tool answered which tool they use. These
answers included various tools such as Google Sheets, Revolut account, their wallet etc.
(Figure 8) This could be because their banking apps do not provide good/pleasing budgeting
tools.

Requirements Analysis 18

Figure 8 Survey budgeting tools

The budgeting tools within these applications might not be easy to use, as shown in Figure 9
below, users were asked about their confidence levels when performing different tasks in
banking apps. Most users answered not confident to the task ‘Making a Budget’.

Requirements Analysis 19

Figure 9 Survey confidence levels

3.4 User Personas

Another task carried out during the requirement’s gathering stage was the development of
user personas. Upon completion of the surveys, it was possible to analyse the data and come
up with user personas to reflect the data. The goal of this activity was to define the potential
users that could use the app and what type of characteristics they have, as well as determining
the needs and goals of each user. Understanding the users’ goals and different levels of
technical abilities helped in making certain design decisions.

The first persona created was a young user named Jamie, who struggles with numbers from
time to time and is an impulse buyer, therefore finds it difficult to save money (Figure 10).
This user uses banking applications however suggested it would help to have an app where
he could create saving goals to assist in saving and budgeting to save for nice things. This
research activity was completed before any designs were produced for the application and
the input from the users helped clarifying potential problems that need to be considered
while designing and developing the application.

Requirements Analysis 20

Figure 10 User Persona 1

The second user persona that was developed was a user named Amy who is 39 years old, who
has multiple bank accounts set up for her family including an account which is used to deposit
savings into. She finds is hard to manage these accounts sometimes as it involves switching
between apps and it can make the process of saving and financial management unpleasant
(Figure 11). This user suggests it would make her life easier and more efficient if it was possible
to have a single app to analyse her family’s finances and manage her savings account.

Requirements Analysis 21

Figure 11 User Persona 2

3.5 Use Case Diagrams

Use case diagrams were created to model the behaviour of the system to help understand
what the requirements of the system should be. Use case diagrams identify the possible
interactions between a user and the system, and they can describe the high-level functions
and scope of a system (IBM, 2021).

Requirements Analysis 22

Figure 12 Use Case diagram 1

Requirements Analysis 23

Figure 13 Use Case diagram 2

3.6 Requirements

Upon the completion of research gathering through surveys, user personas and use case
diagrams, a list of requirements were derived. These requirements are categorized into four
types of requirements - user, technical, functional, and non-functional requirements.

3.6.1 User Requirements

User requirements are used to describe what the user does with the software, such as what
activities that the users must be able to perform.

A user should be able to:

• Sign up with an account or login to their existing account

• View their financial statistics in their dashboard such as their most recent transactions,
their saving goals, bills, and subscriptions

• View expenses which is retrieved from external API

• Link one or more of their bank accounts to the application

• Create a new saving goal

• Add a new bill or subscription to their account

• Logout of their account

Requirements Analysis 24

3.6.2 Technical Requirements

Technical requirements describe how the software should function and what its behaviour
should be. These requirements describe the technical aspects and issues that the developers
need to address for the project or software to execute and work successfully. These aspects
can refer to how reliable the software is, performance-related concerns and how readily
accessible it is.

Some of the technical requirements and considerations for this application include:

• The system will maintain availability

• Will it be technically feasible to develop a full-stack application

• Will it be possible to connect to external API’s – will it be possible to retrieve
information from banks such as recent transactions

• If the full stack application is not feasible, will it be possible to simulate the data and
transactions

• The system will be reliable for users

• The system will have good performance with fast page load times

• The system will have good authentication and authorization standards

• The system will provide privacy for each user – the user interface will not allow anyone
to view sensitive information

• The system will be maintainable – the software will maintain its integrity

3.6.3 Functional Requirements

After gathering research data from users through surveys, it was possible to derive a list of
requirements for the application. Functional requirements are services or components that
the software must offer. Functional requirements can be created using a numbered list to
determine the most important features, with the first item being the most important feature.

The application should be able to:

1. Let users create accounts and login to existing accounts
2. Require users to authenticate their account on every login
3. Let users link their various bank accounts
4. Integrate with external APIs
5. Let users perform various actions such as viewing recent expenses, adding updating,

and removing bills/subscriptions etc.
6. Let users add new saving goals
7. Store information in a database
8. Allow users to logout of their account manually

3.6.4 Non-Functional Requirements

Non-functional requirements in software define the performance and scalability of an
application. If these requirements are not met, the application does not stop working,
however it might not work and perform as well as it possibly could. These requirements are
contrasted with functional requirements that define specific behaviour or functions.

Requirements Analysis 25

The application should:

• Be easy to use, with pleasing interfaces and easy to remember how to use

• Load pages within 3 seconds when the user enters the app/navigates through pages

• Have strong and reliable security for users

• Be able to handle large volumes of traffic without issues

• Be available for users in different continents

• Have consistent design patterns throughout screens

3.7 Feasibility Study

There are numerous technologies that could be used to build a mobile application. Each
technology has its own language and frameworks available to use. If the application is being
developed to be native to Apple OS, Swift is a popular language to use. This offers advanced
features with minimal coding that can be maintained. If the app being developed to be native
to android devices, Java and Kotlin are popular languages that are used to accomplish this.
These languages also offer advanced features and keep the app flexible.

However, in recent times, application development frameworks have been created to help
developers create native (cross-platform) apps. Two popular frameworks that were explored
and considered to build this application were Flutter and React Native.

Flutter is a cross-platform mobile application development technology that uses the
programming language Dart. This is an open-source platform SDK created by Google that
extends a wide range of plugins backed by Google and allows mobile apps to be built for both
iOS and Android platforms.

Figure 14 Flutter

Requirements Analysis 26

React Native is an open-source framework written in JavaScript that has become one of the
most popular native mobile app development technologies. React Native allows developers
to create mobile apps with JavaScript using the same design as React. Apps build with React
Native cannot be distinguished from an app build with Swift or Java. The likes of Instagram,
Amazon and Uber are created using React Native.

Figure 15 React Native

Flutter’s popularity has grown in recent years and is becoming one of the more popular native
mobile app development technologies, however for this project, React Native will be used to
develop the app. The reason for this is that for the backend, Node JS, MongoDB and express
will be used. Therefore, React Native will complement these technologies well as it fits in with
the MERN stack.

For the backend of the application, MongoDB will be used as the database, Node JS and
Express will be used for the server-side and API.

Figure 16 MERN stack

3.8 Project Plan

For the project plan, a project plan schedule will be used to assist in project management.
Each sprint and the sprints tasks will be laid out and the progress of them can be tracked by

Requirements Analysis 27

the status. The possible statuses are ‘Not Started’, ‘In Progress’, ‘Complete’, ‘Overdue’ or ‘On
Hold’. This will help make it clear what needs to be done by the end of each sprint and this
should allow me to deliver a successful product. The project will be developed over 9 sprints
with each one lasting two weeks. At the end of each sprint there are a set of deliverables
required.

Figure 17 Project Plan Schedule

Microsoft’s Tasks app is also used as part of the project plan. This works as a Kanban tool
where tasks are created in the backlog, then moved to the ‘To-Do’ phase and then to the
‘Doing’ phase and finally to the ‘Done’ phase. This will help to make it clear what needs to be
done in each sprint.

Figure 18 Microsoft Tasks Planner

Design 28

4 Design

4.1 Introduction

After the completion of gathering research and requirements for the app it was then possible
to move on to the design phase. This phase involves several design aspects such as application
design, system architecture design, user interface design etc. This chapter describes the
design of the application. The aim of the design phase is to develop the designs that can be
used to achieve the desired project goals that are established in the requirements phase. The
design of the app is split into system architecture, application design and user interface
design.

4.2 System Architecture

System architecture design is a conceptual representation of the components and
subcomponents that reflects the behaviour of the application. It functions as a blueprint for
the system and developing project, laying out the tasks necessary for to be executed by the
developers. The steps to designing a good system architecture are to first analyse the
requirements for the system, define use cases for them and identify processes/modules to
implement these use cases, then to select an operating system and hardware platform, assign
requirements to induvial processes/modules and then define sequence diagrams for these
processes.

As shown in Figure 19 below, the systems architecture is separated into four parts – the client,
API, server and back-end. The client side will be a user using the application on their mobile
device, and the client will perform actions in the app that will make requests to the API for
example getting an access token. The server will also communicate with the client side when
a user is logging in or registering, a request will be sent to the server and some server-side
code will run to login or register a user. The API that will be used is Nordigen and the server
will be using Node JS and Express. The server will then communicate with the back end which
will be a database created with MongoDB. The server will send documents to the back end
and will in turn receive a response in JSON format.

Design 29

Figure 19 System Architecture Design

4.3 Application Design

4.3.1 Technologies

The technologies that will be used to develop the application are React Native, Node JS,
Express, MongoDB, Nordigen API, GitHub and Figma. The main technologies that are used for
creating this full stack application are part of the MERN stack (Mongo Express React Node).

React Native will be used to develop the front end of the application. React Native is an open-
source framework written in JavaScript that is used for creating native mobile applications –
for both Android and iOS devices. React Native is the same framework as React, however the
difference is it uses native components instead of using traditional web components as
building blocks. It uses components such as images, text, views etc.

Node, Express and MongoDB will be used as the back end of the application. Express is a
framework for building web applications on top of Node. Node is a JavaScript runtime tool
that allows developers to use the JavaScript language as a server-side language. Both tools
together can communicate to the applications database – MongoDB. MongoDB is a document
based that is used to store documents in JSON-like format. This database which will be used
to store information for the application, such as user emails, passwords, access tokens etc.

Design 30

The Nordigen API will be used as a middleman between the user interface and the backend
of the application, which will be used to let users access their bank accounts and transactions.
Nordigen is a freemium open banking data platform that provides free access to bank data
and access to data products for analysis and insights. The Nordigen API provides a set of
endpoints that allows developers to integrate their transaction categorization and insights
solutions to systems.

Figma will be used for creating the design and wireframe documents. Figma is a collaborative
tool where developers can work on files at the same time. It also allows developers to build
libraries of reusable components such as styles, fonts etc. It makes creating consistent
wireframes and prototyping easy and efficient.

GitHub will be used as a version management control tool. GitHub allows developers to
upload and share code between each other. Version control helps the developers track and
manage changes to a software project’s code. As a software project grows, good version
control becomes essential.

4.3.2 Design Patterns

Design patterns are typical solutions to common problems in software design. Each pattern
acts as a blueprint that can be customized to solve design problems in code.

Figure 20 System Design Pattern

Design 31

The pattern used in the server will be the model router controller pattern. The Express
framework and Node will be used in the server (Figure 20). The router will be responsible for
handling HTTP requests and for each request sent, the router will call the appropriate
controller and a corresponding function. The controllers will contain classes which have
functions that will run to carry out any CRUD functionality. For each controller class, it will use
a model to access the database. These models are patterns that provide an interface to access
the database. An example of a model could be for example ‘User’. These models provide
specific data operations without exposing details of the database. Usually in the model classes
a connection is made to different database collections.

The server communicates with the database using object document mapping (ODM). This is
used for mapping an object model and a NoSQL database such as MongoDB. In these
databases documents are stored in JSON format in a collection (Dhruw, 2020). For example,
if a new user is registering an account, a new user document would be inserted into the users
collection, which would be displayed in JSON format.

For the front end of the application, React Native will render the user interface through the
use of components. Navigation throughout different screens in the app will be handled by the
React Router package, which enables navigation among screens of various components in the
app. The React Native app will use Redux for managing state in the app. State management
is discussed in the following section.

4.3.2.1 REST API

A REST API will be used in this application. Representational state transfer (REST) is a software
architectural style that is used to guide the design and development of the architecture for
the web. An application programming interface (API) is a set of rules that define how
applications or devices can connect to and communicate with each other (IBM Cloud
Education, 2021). REST APIs communicate through HTTP requests to perform standard
database functions such as creating updating and deleting records. For example, the REST API
would use a GET request to retrieve a record from the database, a POST request to add a
record, a PUT request to update a record and a DELETE request to delete a record. In this app,
various HTTP requests will be sent to the server and the server code will run to handle each
request. For example when a user is logging in to their account, a POST request will be sent
to the server along with parameters such as the users email and passcode, the server will then
communicate with the database to retrieve the user document, create an authentication
token and log the user in to the app.

4.3.2.2 State Management

The application will require a structured state management, both for the local and global
state. For handling the local state in the component files, the useState hook in React can be
used. The useState hook is a hook integrated into React that can be used to track state in a
function component. State generally refers to data or properties that need to be tracked in
an application (W3 Schools, 2022). For handling global state in the application, a library called
Redux can be used. Redux is an open-source JavaScript library for managing and centralizing
state in applications. Redux is commonly used in React applications as it makes it easier to
manage state, by allowing certain variables to be accessed anywhere in the application, no

Design 32

matter how far down the component tree they may be, making the code much more
structured.

Figure 21 Redux Architecture - https://www.javatpoint.com/react-redux

Figure 21 shows the components of a Redux architecture. The store is like a container where
the entire state of an application lies. It manages the status of the application and has a
dispatch(action) function. An action is something that is sent or dispatched from the view
which are payloads that can be read and managed by the reducers. It is an object created to
store the information of the user’s event. Different data that is stored in the action is the type
of action, time of occurrence and the state that it looks to change. A reducer is a pure function
that receives an action and the previous state of the application and returns a new state. The
action describes what happened and it is the job of the reducer to return the new state based
on that action.

4.3.3 Process Design

Process design is the process of creating various types of diagrams that gives the developers
a clear picture of the way the application should function and what pieces of software need
to be created to allow the application to function as expected. There are numerous types of
process design that can be used such as class and sequence diagrams, user flow charts, ERD
diagrams and database design diagrams.

https://www.javatpoint.com/react-redux

Design 33

4.3.3.1 Nordigen API Process and Integration

Figure 22 Nordigen Customer Journey

Figure 22 depicts an example of the customer journey for the client apps and end users. The
process to integrate the Nordigen API and link bank accounts is described below:

1. The process begins within the end-user’s application – this could be a website or
mobile application. A HTTP request is made from the React Native application to
communicate with the Nordigen severs to access private security tokens and keys.
Once a successful HTTP request has been made to Nordigen, an access token is
returned to the end user’s application, which is a credential that is used to make
requests to each of the Nordigen API endpoints. Once this request is handled, the end
user is shown what financial service they can link with the application. The list of
institutions available is retrieved from the Nordigen API and depends on financial
institutions Nordigen supports within any given country.

2. After the user selects their institution, they are taken to a second screen that contains
a consent text. This is a view that is hosted by Nordigen. Once the user accepts
consent, they are directed to the next screen.

3. An interface is then provided by the financial institution for the user to link their

account data. This interface is developed and hosted by the financial institution. After
successful authentication, their access token is stored on the Nordigen server which
enables Nordigen to fetch their bank account data from their respective financial
institutions.

4. In the final step, the user is redirected to a URL specified by the developer. Once the

user has successfully concluded the process, bank data such as transactions, accounts
etc. can be accessed by the Nordigen API.

Design 34

4.3.3.2 Class Diagrams

Class diagrams are the main building blocks of object-oriented modelling. It is used for general
conceptual modelling of the structure of an application. Class diagrams can be used to model
the objects that make up the system.

Figure 23 Class Diagram

4.3.3.3 Sequence Diagram

Sequence diagrams are interaction diagrams that detail how certain operations. Sequence
diagrams capture the high-level interactions between the users of the system and the system
(Figure 24).

Design 35

Figure 24 Sequence Diagram

4.3.3.4 Flow Charts

Flow charts are used to display the separate steps of a process in a sequential order. The flow
chart below (Figure 25) shows the flow of a user logging into their account and being brought
to their dashboard.

Figure 25 Flow chart - Logging into account

The flow chart in Figure 26 below shows the steps that a user would take when they are going
to add a new saving goal.

Design 36

Figure 26 Flow Chart - Adding a new saving goal

4.4 User Interface Design

After completing the application design, the next stage of the design is the user interface
design. This is where the paper prototypes will be sketched, then the wireframes for each
screen will be designed based on the paper prototypes, a style guide will be made to
encourage consistent design patterns. Various flow diagrams will be made to communicate
specific activities through a sequence of actions/movements within the app.

4.4.1 Wireframe

The next task in the design process was the design of wireframes that should represent how
the application should look. Figma was used as a tool for designing the wireframes.

Figure 27 Authentication Wireframes

Design 37

A prototype of the various steps for user authentication are displayed in Figure 27. It shows
the welcome screen which will be displayed when a user enters the app, from here they can
navigate to either the sign up or sign in screens. Each of these screens portray the potential
style of the input boxes, buttons, icons and SVG images. Some of the colours are different as
the design system/style guide were still being created. Each screen displays good readability
and colour contrast.

Figure 28 First iteration of main screens

The first iteration of the main screens are shown in Figure 28. These are the potential screens
that a user can navigate to from the bottom navigation bar. For example, the home screen is
the screen that the user will see when they login to their account, from there they can
navigate to their savings, recent transactions, their bills and subscriptions page and profile
page. These wireframes are quite basic with minimal colour in each, the goal of this iteration
was to get a good idea of how the screens might look and how the user flow might be.

Design 38

Figure 29 Second iteration of screens

In the second iteration of the wireframes (Figure 29), more colour was added to the screens
and there was a slight change to their design. The primary colour which is blue was added
throughout the screens and its complementary colour (yellow) was added in some parts such
as the add button in the bills screen as a test to see how it looks and to see if it increases the
readability. In the home screen, a bit of personalization was added, with a dark backdrop to
increase contrast. Below that the user can access their saving goals which shows the amount
of money in each and a status bar to show how close they are to reaching their goal. They can
also switch to their ‘wallet’ which would display the amount of money that’s available in their
main account. Below this the user can see a list of their most recent transactions, where the
icons were replaced by arrows with a colour surrounding them – this was to make it easier to
visualize whether the transaction was an expense or income. In the savings screen, the total
savings balance is displayed with a status bar to show how close the user is to completing all
saving goals. Below this is each saving goal displayed in a box with an icon, the name of the
goal, the amount of money currently in the saving goal and the percentage of completion.

Design 39

Another style of the home screen was designed in Figure 30. In this wireframe a user profile
picture is added to add more personalization. The user can view their ‘instant cash’ that is
currently available in their main account and below this they can see each of their saving goals
and from here they can add more goals. The use of icons was used in this iteration, to
potentially make it easier visually for the user to see their saving goals.

Figure 30 Different design of home screen

Design 40

Figure 31 Add & Edit Saving goal screens

Figure 31 shows the design of the screens where users can add new saving goals and edit
existing goals. The user should be able to input the name and amount of the goal, and
optionally select an icon that will relate to the goal and a colour – which would show on the
background of the goal in the savings screen (Figure 29). This would add more personalization
for the user. When a user selects a goal, they would be taken to the edit screen and from here
they could see the progress made and have the option to update the details of the saving
goal. The user could also have the option to add and withdraw funds from the goal.

Design 41

4.4.2 Style Guide

Figure 32 Style Guide

The first style guide/design system was designed for the app (Figure 32). This shows the fonts,
colours, icons and components such as buttons that will be used throughout the app. Having
a design system promotes good practices for having a consistent design throughout the app.
The fonts were retrieved from Google Fonts, the colour scheme was generated from the
Material Design colour palette creator (Material Design, 2022). Using this resource, a primary
colour can be selected, and it generates various resources such as complementary and
analogous colours.

4.5 Conclusion

The design of the system architecture and application design provided a better picture of
what technologies should be used to develop the application and how it should function. It
has shown how each system should function together in order to produce a full-stack mobile
application.

This chapter has also discussed the overall user interface design of the application. The
development of the wireframes has aided in showing how the user interface should look to
the user and how the experience should be. A style guide has been developed that contains
references such as colours and typography that can be used throughout the application’s

Design 42

components which in return results in the development process speeding up and consistent
design throughout the application.

Implementation 43

5 Implementation

5.1 Introduction

The next stage in the development process was to begin the implementation. This stage
involved the process of implementing the first outlined design of the application. The steps
for this was to set up the development environment, begin coding the front end of the app in
a React Native project, set up the backend for the app which includes the MongoDB database
and Express server, and the REST client for testing the endpoints for the REST APIs.

5.2 Development Environment

The code editor used to develop the application was Visual Studio code (VS Code). VS code is
a code editor with support for development operations such as debugging, task running and
version control. VS code has Git version control built in, so it was possible to open the app’s
project folder, checkout to the current branch that was being worked on and switch between
branches, make commits and push to the remote origin – all without having to leave the code
editor.

Git was used as version control. A separate branch would be created each time a new feature
would be in development, for example a branch such as “authentication-branch” would be
created to develop the authentication system for the app. Creating separate branches for
features is good practice because in a professional environment the main branch of a project
is rarely worked on. It is generally bad practice to work and make changes directly to the main
branch, as this can cause merge conflicts. Once the feature was completed, a commit was
made, the code was then pushed and merged to the main branch.

While developing the user interface for the app, a mobile phone emulator was required to
see the app being developed (Figure 33). For Mac, XCode was used to run its built-in
emulators and on Windows PC, Android Studio’s virtual devices were used. When the project
is run in the terminal, the Expo CLI runs the React Native application and it then provides the
option to run on an android or iOS device. Once the device is up and running, the app
automatically connects to the simulator.

To test the REST APIs endpoints, a REST client was required. Insomnia was used to test these
endpoints, which can be seen in Figure 43. Insomnia is an API testing tool that allows
developers to access applications without interacting with the system or user interface. This
was used to test Nordigen’s API and the REST API used in the backend.

Implementation 44

Figure 33 Development environment workflow

5.3 Database

MongoDB was used to create the database for the app. MongoDB is a document-oriented
database program that is classified as a NoSQL database program. It uses JSON-like
documents to store data. MongoDB atlas was used to create and host the database. Mongo
Atlas is a cloud database that handles the complexities of deploying and managing a database
on a cloud service provider such as AWS, Azure etc. Once the database was created, a cluster
is then defined which is a NoSQL database in the public cloud. Within this cluster, the
collections are then defined which resemble tables in an SQL database. An example of a
collection would be a user’s or sessions collection.

Figure 34 MongoDB cluster

Implementation 45

5.4 Backend

For the backend of the app, an Express app was created with NodeJS for hosting a server.
Express is a framework for building web applications on top of Node. This application was
responsible for holding all the server-side code and handles requests being made from the
client application. The backend application then communicates with the database and sends
information back to the client app. This architecture creates a full-stack application.

5.4.1 Configuration – Environment Variables

Figure 35 Environment Variables

Certain environment variables are declared in a ‘.env’ file. These variables contain sensitive
information for the app such as the database name, URI, and the secret and IDs for the
Nordigen API. This information is stored in this file so that other developers cannot view this
information – this file is not pushed to any GitHub repository.

5.4.2 Application Configuration & Scripts

Figure 36 Package.json file

Each Node/Express application comes with a package.json file which is where the
configuration for the app can be set up. This is where the entry point for the app can be
declared and when the ‘npm run server’ command is ran in a terminal, the code on line 8 runs
which then starts up the server.

5.4.3 App/Server Initialization

In the ‘server.js’ file, an instance of an express object is initialized and stored in a variable.
This object can then be used to set up middleware for the app such as JSON and URL encoded.
Each router object is imported into this file and the routes are handled as shown in lines 19 –
21 (Figure 37). The app object is then exported.

Implementation 46

Figure 37 Server JS file

5.4.4 Index File – App entry point

The ‘index.js’ file is where the server runs and makes a connection to the various DAO classes.

Figure 38 Index.js configuration

The app object, libraries and DAO classes are imported into this file. Different constant
variables are instantiated such as the port and database URI. A new mongo client is set up

Implementation 47

and set to a variable called ‘client’ which will then be used to connect to the MongoDB
database (Figure 38).

Figure 39 Index file - running server

A try-catch block then runs which connects to the database and DAO classes, and then the
‘listen’ function is ran on the app object which runs the server on the specified port.

5.4.5 App Structure

The backend project was structured in three sections – the routes, controllers and DAO (Data
Access Objects). In the routes folder it contained various routers for the app such as a user’s
router, which listens for and handles URL requests. Each route that is defined calls a function
in a controller class. For example, in Figure 40, if a post request is sent to /login, the ‘login’
function is called in the user’s controller.

Figure 40 Users router

Once the function is called in the controller class, this code is run. In the login function, it takes
in a request body sent in the request – this might include an email and password for example.
Some error handling is performed to reduce the chance of bad data being stored in the
database. Within the controller functions, this is where the DAO objects are accessed. For

Implementation 48

example, in Figure 41, the ‘getUser’ method is called in the users DAO class and the email is
passed in. Within this function, a ‘findOne’ query is executed in the database to find a user in
the database with that email (Figure 42).

Figure 41 User controller - login function

Implementation 49

Figure 42 Users DAO – getUser()

This process is the same for developing most of the backend project. To test that the
endpoints were working as expected, the Insomnia REST client was used to send requests to
the server. In Figure 43 below, a POST request was sent to the server’s register endpoint with
an object containing a name, email and passcode. A 200 OK response is sent back from the
server to the client with an authorization token and an object containing the user’s
information.

Figure 43 Testing endpoints in Insomnia

5.4.6 Linking an Account

When a user performed actions like linking an account or accessing their currently linked
accounts, various functions were used to accomplish this. The accounts router, controller and
DAO class were used in this process.

Figure 44 Accounts router

Implementation 50

The accounts router (Figure 44) file is responsible for handling requests sent to the ‘/accounts’
endpoint. As shown on lines 11 and 12, if it is a POST request then the ‘apiAddAccount’
function is called within the controller and if it is a GET request, the ‘apiGetAccounts’ function
is called.

Figure 45 Accounts Controller - Add function

In the add account function, the user must be authenticated to make the request, therefore
a check is made to see if there was a bearer token passed in as a header. The bearer token is
then passed into the ‘decoded’ function within the user class – which verifies the JSON Web
Token (JWT) and returns a new user object. A Nordigen access token is required later in the
function and this is retrieved in the function from lines 21 to 29 in the above figure.

Figure 46 Retrieving accounts

Implementation 51

The data from the request body is then stored in a variable on line 32. This data includes the
bank name and account ID. A function is then called in the Accounts DAO class to retrieve the
user’s currently linked accounts if they have any. This function takes in the users email and
retrieves the account documents that contain the provided email. A function is then created
that is used to see if the user has already linked an account with the provided account ID on
lines 38-42. A check is then made to see if the account exists and if it does, an error is returned
to the user as a JSON response with a status code of 400.

Figure 47 Getting account details

If no errors have occurred, the function continues to compile. A request is made to the
Nordigen API to get the details of the account. The account ID is passed in the URL and the
access token is passed in as a header. This result is then stored in a variable as an object. This
variable is then combined with the previous variable (accountFromBody) where the JavaScript
spread operator is used (…) and is combined into a new variable called ‘fullAccountDoc’. A
constant variable is created to store the response where the ‘addAccount’ method is called
on line 69. This function takes in the account document and user object.

Implementation 52

Figure 48 Accounts DAO - Add account

The ‘addAccount’ function in the accounts DAO class is responsible for inserting the document
into the accounts collection in the database. A constant variable is defined as
‘updatedAccountDoc’ which is an object containing the data to be inserted as a document.
An ‘insertOne’ action is then performed on the accounts collection with the document passed
in. This is then returned back to the controller class.

Figure 49 Returning response with accounts

 A list of the users accounts is then retrieved by calling the ‘getAccountsByEmail’ function in
the user DAO class. This array is then passed into a JSON response which indicates is a
successful request and the completion of the process. An example of a successful request and
response is displayed in Figure 50.

Implementation 53

Figure 50 Successful request

5.4.7 Retrieving Accounts

A request can be made to retrieve the accounts for any specific user. A GET request is made
to the ‘/accounts’ endpoint and the ‘apiGetAccounts’ function is called, which is previously
shown in Figure 44.

Figure 51 Accounts controller - get accounts

Implementation 54

An authentication check is made again as the user must be authenticated to make the
request. The user object is then stored in a variable. The ‘getAccountsByEmail’ function is
then called from the accounts DAO class and the users email is passed into the function. A
destructuring assignment takes place on line 93 above, where the variables ‘accountsList’ and
‘totalNumAccounts’ are unpacked from the response from the DAO function, and stored into
their own distinct variables. These variables are then used to create an object, ‘response’. This
response is then returned to the user in JSON format.

Figure 52 Accounts DAO – getAccountsByEmail

For the function in Figure 52, a cursor object is created, which is used to perform the ‘find’
query on the accounts collection. This code which is on line 48 tries to find the documents in
the accounts collection where the email matches the email that was passed into the function.
The lines from 54 to 56 provides the possibility for pagination, by only allowing a maximum
of 20 accounts per page in the response. A try-catch block is then executed to transform the
cursor into an array and store it in a variable. This variable is then returned to the controller.

Implementation 55

Figure 53 Successful GET accounts response

5.5 Frontend

The frontend application is the application that the end-users interact with. For the frontend
of the application, it was developed using React Native. React Native is an open-source
framework for creating mobile applications. It uses the same framework as React however
for creating mobile applications native components are used rather than traditional web
components.

To implement the design of the application, a library called ‘NativeBase’ was used. NativeBase
is an accessible utility-first component library that is used to help developers build consistent
UI across iOS, Android, and Web. This framework provides an abundance of native
components such as buttons, alerts, boxes, styled form inputs etc. Each component supports
various utility props which helps the developers style the components to their liking.
Examples of these utility props would be padding, margin, background colour, size etc. The
use of this library significantly speeds up the development process as building with React
Native from scratch can become a tedious process with the requirement of certain steps like
styling, adding interactions, responsiveness, accessibility etc. This is a similar library to
popular frontend frameworks for the web such as Bootstrap and Tailwind CSS. NativeBase
ships with their own colour palette for styling each component and provides the ability to
customize the default colour palette and each component.

Error!

Implementation 56

Figure 54 NativeBase themes - https://www.npmjs.com/package/native-base

5.5.1 Project Dependencies

https://www.npmjs.com/package/native-base

Implementation 57

Figure 55 Frontend dependencies

To start the application, the React Native project comes with a ‘package.json’ file that is
written in JSON. This file contains the dependencies that are required to install to develop the
project, for example the react package comes with all the tools provided with React. This file
also contains certain scripts that can be run in the terminal within the root of the project.
These scripts run the expo server and allows the developer to connect to their virtual device.

5.5.2 Parent Component

Figure 56 Parent - App component

For every React Native project, it comes with an ‘App.js’ file that acts as the entry point for
the application and it is the single component that is rendered and displayed to the user.
Within the App.js file, the rest of the components are stored such as the various screens in
the app. Within this file, the NativeBase, Redux and React Navigation packages were also

Implementation 58

implemented. In order to implement a custom theme for the application, a custom
component was created called the ‘CustomThemeContainer’ and inside this component, any
fonts and colours etc. that might be used throughout the app can be initialized. This
component simply returns a custom provider component provided by NativeBase, where the
theme object is passed in as a prop and the children props are returned within this
component:

Figure 57 Custom theme container

In this case, the rest of the components from the App.js file are rendered inside the ‘custom
theme’ component. This allows the custom fonts and colours to be used throughout the
application using NativeBase components.

The next component in the App.js file is the ‘Provider’ which is part of the react-redux library.
Redux is responsible for handling state management throughout the app. The Provider
component takes in a store prop which is an object that contains various reducers. A reducer
is a function that takes the current state and an action as arguments, and returns a new state
value as the result. For example, if the application requires an authentication token to be used
throughout the app, a reducer can be used such as an ‘auth reducer’ that contains a function
that takes in the arguments (auth token) and the function then returns the updated state.
This state can then be accessed in any component in the app – no matter how far down the
component tree it may be. This makes the structure of the app and its variables cleaner, as
certain variables can be stored globally, rather than being passed through multiple
components as props.

The next component in the App component tree is the ‘Navigation Container’ which is a
component provided by the react navigation library. This is a parent component that wraps
around the various routes/screens for the app. This allows users to navigate to different
screens in the app. Inside this component, a custom component called ‘Routes’ has been
created in order to tidy up the main App.js file. The Routes component returns the screens
stack for the application. An example of this screen stack is shown in Figure 58.

Implementation 59

Figure 58 Screens Stack

5.5.3 Authentication Screens

In the initial sprint, the authorization screens began being developed such as the welcome
screen, login and register screens and the home screen. The UI was developed first with some
hard-coded data and then the API and backend were gradually integrated into the app, with
the user’s details getting stored in the database when they registered and receiving an
authentication token when they logged in. For the purpose of testing the application, dummy
data was used with the help of Nordigen’s sandbox data. This essentially acts as a fake bank
and provides access to a list of fake transactions that are used for testing in the app.

Implementation 60

Figure 59 Development of First Screens

One issue that was faced when developing these screens was that when the user tapped on
some of the inputs, the keyboard was covering the input which hindered the view and
experience of the user as they could not see what they were typing. As shown in Figure 61
below, the user is attempting to input their password however the keyboard covers the entire
input field. This issue was solved by using a package called react native keyboard aware scroll
view. This provides a container where the form can be inserted and when the user taps on an
input field it checks to see if the keyboard will cover the input and if it is, the screen
automatically scrolls down to show the input field (Figure 60).

Implementation 61

Figure 61 Keyboard blocking password input

The main major implementation issue faced was the task of getting familiar with building an
app with the native components rather than the traditional web component blocks. However,
once this type of development is learned, the process of developing the app became fluent
and quicker.

For the frontend handling for the user authentication system, it connected to a custom
Express backend application and also made requests to the Nordigen API. When the user
makes request to login or register, requests are made to the backend which executes a certain
function that then communicates with the MongoDB database.

Figure 62 Register Component

Figure 60 Keyboard aware scroll view

Implementation 62

In the component above, the Register screen is displayed to the user, which is a form with
various fields such as name, passcode, email etc. To handle errors on the frontend, a package
called ‘react-hook-form’ was introduced. This allows the developer to initialize the field
names and default values and for each field, it is possible to set up certain rules – for example:
the name field must be a minimum length of 3 characters. This object is initialized at the top
of the component, as shown in lines 28 to 39 above. On line 25, the dispatch object is set up
which is a redux object that is eventually used to make updates to the state. On line 26 a React
UseState variable is set up and initialized as null. This variable is used to store errors returned
from the response sent back from the API if there is any.
Once the user presses the sign up button and there are no errors on the frontend, the
register() function is run (Figure 63).

Figure 63 Register function

This function takes in data as a parameter which is the data filled in from the form fields. An
axios request is then sent to the backend to the /register route and the user object is passed
in as the request body. Axios is promised based and runs the ‘.then’ block if the request has
been fulfilled, or else the ‘.catch’ block is run to handle any errors. If the request has been
successful, a user gets stored in the database and a response is sent back with the user data
and an authentication token. The dispatch() object is then used to change the state in the
Redux store which is shown on lines 52 to 55 – where an authentication token and a user

Implementation 63

object are being initialized as they can be used later throughout the application. An axios
request is then sent to the Nordigen API to create a new token that will be used to access
their list of banks, accounts etc. This request requires a secret ID and secret key which have
been initialized in a .env file in the project route that contains environment variables. If this
request has been successful, an access token is returned, which has been set in the global
store on line 65. The user is then navigated to the banks list screen where they select their
bank.

5.5.4 Linking Bank Accounts

Figure 64 Banks List Component

The banks list component is responsible for displaying a list of banks to the user so that they
can choose which one to link to their account. At the top of the component an empty array is
initialized as a variable called ‘banksList’ on line 21. The ‘nordigenToken’ is also retrieved from
the global state by using the Redux useSelector hook, which is required in the header for each
request to the Nordigen API. On line 23, a useEffect hook is used which is a hook provided
from React that allows side effects to be performed in components such as fetching data,
updating the DOM. In this example the getBanks() function is run when the component
renders, which makes an axios request to the institutions endpoint. The Nordigen token is
passed in as the header and in the response, the banks list variable is set to an array from the
data returned in the response.

Implementation 64

Figure 65 Banks List JSX

As shown above, JSX is rendered and a check is made to see if there is data in the ‘banksList’
variable. If there is each bank is rendered using the JavaScript map() function that renders
each bank in the array. Each item is a box that contains an image and text, the item is wrapped
in a TouchableOpacity which is a component provided by React Native that allows the user to
press on items (Figure 66). When a user presses on a bank item, the selectBank() function is
executed and the bank item is passed in.

Figure 66 List of banks

Implementation 65

Figure 67 selectBank function

The selectBank function navigates the user to the user agreement screen and passes props to
the next screen. These props are the bank name and ID which will be used to access the bank
information on the next screen.

The next step in the process of linking accounts from the Nordigen API is for the user to
complete the user agreement (Figure 68), which grants the access of their bank transactions
and accounts. Once the user presses the agree button, the ‘createAgreement()’ function is
executed.

Figure 68 User Agreement screen

Implementation 66

Figure 69 createAgreement function

This create agreement function makes an axios request to Nordigen’s agreements endpoint,
the institution ID is required in the request body, which is the bank ID that is passed in from
the previous screen. In this example and for testing purposes, the Nordigen sandbox finance
bank ID is passed in on line 56. Once this request has been completed, another axios request
is sent to the requisition’s endpoint, which is used to pass in the bank ID and a redirect link
where the user will be redirected once they have completed the process of linking their
account through Nordigen. In the response of this request, a link is returned in the response
that is used to begin the process of linking the bank institute through Nordigen. The web
browser of the phone will open up for the user when line 82 is executed. This is possible by
using the openBrowserAsync function that is provided by the ‘expo-web-browser’ library. The
variable ‘processComplete()’ is then set to true in order to update the state of the component
and display a message to the user telling them to refresh the screen in order to proceed
(Figure 70).

Implementation 67

Figure 70 Conditionally rendering

Figure 71 onRefresh function

When the user refreshes the screen, the ‘onRefresh’ function is executed. This makes an axios
request to the requisitions endpoint with the ‘agreementID’ passed in that was retrieved from
the previous request. The purpose of this request is to get a list of the accounts that the user
can link to, which is then passed in to the next screen – List Accounts screen. The accounts
array is passed in as props to the list accounts screen.

Implementation 68

Figure 72 List Accounts functions

The purpose of the list accounts screen in the figure above is to allow the user to select the
account they wish to link. To prevent the user from being able to link the same account more
than once, a function ‘checkUserExistingAccounts()’ was implemented. This function is run in
the use effect hook once the component has rendered and, in this function, a request is made
to the Express backend to get the users existing accounts. This returns an array with the
account IDs that relates to the user, and for each account in the response, a variable called
‘existingAccounts’ is set to the account ID. The function ‘getAccounts()’ is then called (Figure
73).

Implementation 69

Figure 73 getAccounts function

Once this function is called, the account IDs from the previous screen is stored in the state
variable ‘accountIds’. A check is then made to see if the user already has the account linked,
this is handled by checking if the existing accounts array contains the accountID at index 0,
and if it doesn’t, the axios request is made to get the account details – which is then stored in
the ‘accountOne’ variable on line 72, otherwise the ‘accountOne’ is set to null. This process
above is then repeated for the second value from the account IDs array.

Figure 74 Conditionally render account

Implementation 70

Each account is then conditionally rendered in the component. As displayed in line 176, a
check is made to see if ‘accountOne’ is not null. If it does exist, the account is rendered
displaying its information and is wrapped around a ‘pressable’ component (Figure 75), and
when the user presses on the account, the ‘selectAccount’ function is called.

Figure 75 Select Account Screen

Implementation 71

Figure 76 selectAccount function

This function takes in the account number that was selected, in the above example in Figure
74, the number 0 is passed into the function as a parameter, this represents the index of the
value in the accountIDs array – as shown in line 106. A request is sent to the Express backend
with the account id, and this gets stored in the database as an account document – that
contains the account ID and user’s email. In the response of this request, each of the user’s
accounts are returned as an array. To access the most recent account that was added, the
code on line 119 was used. This account ID is then stored in the global store as a variable in
case it needs to be accessed later in the application. The user is then navigated to the
‘AccountAddSuccess’ screen with the accountID passed in as a parameter.

Implementation 72

Figure 77 Account add success screen

This screen gives feedback to the user that they have successfully linked their bank account
to the app. When the component is rendered, the ‘getAccounts()’ function is called in the

Implementation 73

useEffect hook. This makes a request to the Nordigen APIs account details endpoint, and
passes in the account ID from the previous screen. This returns an object containing the
details about the account such as the name, type, currency etc. This is then displayed to the
user as the account that they have linked. The user is then offered a choice – if they would
like to link another account or else continue. If the user chooses to link another account, they
are taken through the process again beginning at the list of banks screen. If the user presses
on the continue button, they are taken to the home screen.

5.5.5 Home Screen – User Index

Figure 78 Home Screen

The user index screen (Figure 78) is where users are brought when they initially register or
login to their account. This screen shows them a welcome back message, and displays their
currently selected bank accounts total available balance, and a list of their saving goals
underneath. There is also a hamburger icon that when selected, shows a modal popup that
provides various links such as a link to the user’s profile and the logout button. From this
screen, the user can navigate to the tabs on the bottom tab navigator. These tabs include the
savings index, bills index and recent transactions. There is also a ‘+’ button that takes the user
to a screen that prompts them to add a new saving goal, bill or link a new account.

The user index component contains different functions to perform actions such as getting the
account balance and logging the user out.

Implementation 74

Figure 79 User Index component

As shown in Figure 79, there are state variables initialized in the component such as the
account ID, user object, auth token etc. as these variables are required within this component.
When the component renders, the ‘getAccountBalance()’ method executes, which makes a
request to the account balances endpoint from Nordigen with the account ID passed in. This
returns an object with details of the account such as the currency and total amount.

Figure 80 Logout function

Implementation 75

Another function within the user index screen is the ‘logoutUser()’ function, which makes a
POST request to the Express application and the user’s authentication token is passed in as a
header. Within the backend, the session is removed from the database and a 200 OK response
is returned to the frontend with a success message. The user is then navigated to the
Welcome screen on line 72.

5.5.6 Savings Screen – Index

Figure 81 Savings index screen

The savings index screen is where the user can view their list of saving goals, add a new goal
and it displays the current savings total amount, the total saving goals amount combined and
a progress bar to give the user feedback on how much progress they have made on the goal.
Within this component, there are multiple calculations and features implemented.

Figure 82 Functions to calculate totals

Implementation 76

In the above figure, two methods were implemented to calculate the total savings balance
and the current total amount that the user has saved. The reason for this is to display to the
user for example: “total saved = €699/€1000”. In the ‘getTotalSavingGoal()’ function, an array
is passed in and a variable ‘sum’ is initialized as 0. A for loop is then ran on the array and it
loops over the array by the number of items in the array. An addition assignment (+=) is then
ran on the sum variable which adds each of the ‘amount’ values from the array together and
assigns it to the sum variable. The variable ‘initialSavingsGoal’ gets assigned the sum variable.
Another assignment of a variable is made on line 52, where the ‘totalSavingsGoal’ is assigned
to the same variable, however this time it is passed into another function called
‘currencyFormatter()’ which is described below. The reasoning behind separating these
variables is because the total savings combined returns a long value with no punctuation such
as €121344, this initial value is eventually used in a function to get a percentage value. The
currency formatted value will return a value which would look like €121,344.00.

The ‘getCurrentSavingsTotal()’ function is similar to the one above, however different
variables get assigned and the sum variable gets assigned to the total values of the
‘current_amount’ variables added together.

Figure 83 Currency formatter function

The currency formatter function is used to make the amount string more readable to the user.
It takes in an amount as a parameter and returns a formatted value. An example of this would
be currencyFormatter(1299) => €1,299.00.

Figure 84 Percentage function

The get percentage function was created to return a percentage of two values passed in as
parameters. The partial and total values are passed in and a calculation is made to generate
the percentage. An example use case of this function is to calculate the total completion
percentage for a user’s saving goal – if the goal is €1000 and they have saved €500 currently,
therefore getPercentage(500,1000) => 50.

Implementation 77

Figure 85 Savings index - getSavings()

When the saving index screen has rendered, the function ‘getSavings()’ is called. This makes
a request to the backend and a list of the saving goals that belong to a user are returned as
an array. The variable ‘savingsList’ is set to the response data and then the functions from the
figures above are called by passing in the array. These variables are then used in the return
section of the component and are displayed to the user.

Implementation 78

5.5.7 Savings Screen – Show

Figure 86 Savings show screen

When a user taps on a saving item, they are brought to the saving show screen (Figure 86).
This is where the information of the saving item can be viewed. This screen is where the user
should be able to update the saving’s name, icon, amount etc. and perform certain actions
for the saving like adding or withdrawing funds from the saving.

Implementation 79

5.5.8 Transactions Screen – Index

Figure 87 Transactions Index screen

The transactions index screen is where the user can go to view their most recent transactions
for the current account they have selected. This screen makes use of a couple of endpoints
provided by the Nordigen API.

Implementation 80

Figure 88 Transactions index - useEffect hook & getTransactions

As shown in Figure 88, when the screen has rendered, two functions are called within the use
effect hook – ‘getTransactions’ and ‘getAccountBalance’. Within the get transactions
function, a request is made to the account transactions endpoint provided by Nordigen,
where the account ID is passed in the URL. This account ID is stored in the applications Redux
global store. The Nordigen access token is required as a header in the request, which is also
stored as a global variable.

Upon success of this request, a list of recent transactions is returned in the response. As
shown on line 35, the first 20 transactions are stored in a variable which is an array called
‘accountTransactions’. These transactions are then rendered on the screen.

Figure 89 getAccountBalance function

Implementation 81

The user’s account balance is retrieved from the Nordigen API balances endpoint. The balance
is stored in a variable on line 51 and is then displayed at the top of the screen as shown in
Figure 87.

Figure 90 Transactions loop

A check is made to see if the ‘accountTransactions’ variable contains any data and if it does,
the array is displayed through a loop. A custom component is implemented (TransactionIcon)
on line 148 to 159 which takes in two custom props, ‘colour’ and ‘direction’. Conditional
rendering is then performed to see if the transaction amount includes a ‘-‘ symbol, which
indicates if it is an expense or not. If it does include a minus symbol, the red colour is passed
into the component or else it is set to the green colour to indicate is income. For the direction
prop, either the string “up” or “down” is passed in which determines which direction the
arrow icon faces.

Implementation 82

Figure 91 Transaction Icon component

Figure 92 Transactions Markup

For the rest of the transaction component, the date, details and amount are displayed. The
JavaScript library moment.js is used to format the date, as shown on line 166. More

Implementation 83

conditional rendering is performed to check if the transaction amount includes a minus
symbol to determine if it is an expense or income. If the transaction is an expense, the text
colour is red and if it is income, the text is displayed as green with a green box around it –
which can be seen in Figure 87.

5.5.9 Switching Accounts

Figure 93 Account Selection

Various functionality was implemented to allow the user to switch between the bank
accounts that they have linked. When a user presses on the arrow next to the ‘Instant Cash
Available’ text in the box (Figure 93) an action sheet is displayed at the bottom of the screen
with a list of the user’s accounts. The action sheet is a component provided by the NativeBase
framework.

Implementation 84

Figure 94 getAccounts function

When the user index screen is rendered, the ‘getAccounts’ function is called (Figure 94). This
makes a request to the Express backend to the accounts endpoint which returns an array with
the user’s linked accounts. This array is stored in a variable on line 63. This array is then
rendered on the screen to allow the user to switch between accounts.

Figure 95 Account loop in Action Sheet

The bank accounts array is looped over and rendered on the screen, allowing the user to press
on the account item and two functions are called – ‘selectAccount’ and ‘onClose’. The on close
function closes the action sheet, and for the select account function, the account ID is passed
as a parameter (Figure 95).

Implementation 85

Figure 96 Select Account function

When the select account function is called, the redux state is updated and the user’s account
ID is set to the ID that was passed into the function. The reason for this is the ID can then be
used throughout the application, for example if the user’s transactions for that account need
to be retrieved. On line 156 the ‘getAccountBalance’ function is called to update the home
screen and display the balance for the selected account. This function can be seen in Figure
89.

5.5.10 Add Item Screen

Figure 97 Add item Screen

When the user presses on the middle button on the bottom tab navigator, which is a plus
button, they are brought to the screen shown in Figure 97. From here the option is provided
to the user to add a new saving, bill or to link a new account.

Testing 86

6 Testing

6.1 Introduction

This chapter describes the tests that were carried out for the application. Testing the
application includes the process of evaluating that the software does what it is supposed to
do. Testing is very beneficial as it can help the prevention of bugs, it can enhance the
development process and increase the overall quality of the system.

Several testing methods were used throughout this phase of the project. These testing
methods included functional and user testing on the frontend and backend of the application.

Some of the tests on the application were based off the requirements that were defined
within the requirements chapter, where multiple functional, user and technical requirements
were outlined. The goal of these tests was to outline any issues or bugs within the application
that needed to be addressed before the deployment phase. The goal of the user testing was
to identify any issues in relation to the frontend/user interface of the application. It could be
tested to see if there were any problems with the user flow, navigation and to get an idea of
how the overall user experience of the application was.

The functional requirements were tested through functional and user tests. A functional test
is a type of software test that determines if a piece of software is acting in accordance with
the pre-determined requirements. It uses black box testing techniques, where the user has
no prior knowledge to the internal systems logic (Bose, 2021). Functional tests can show if
the piece of software is functioning and works as expected, but it does not indicate if it is easy
to use.

A user test is a testing technique used in user-centred interaction design to evaluate an
application by giving it to users to test. It gives input on how users interact with an application
and can be used to show if the application is easy to use and intuitive for the user.

6.2 Functional Testing

Functional tests were carried out to see if certain pieces of the application worked as
expected. The black box testing technique was used to test. This meant the tests would
indicate whether the pieces of software functioned and worked as expected, but not whether
the app was easy to use. For the tests, a description of the test case was described, and then
the actual output of the test was tested against the expected output.

The functional tests were used to test a variety of parts of the app. They were split into the
following sections:

• Authentication

• Navigation

• Calculation

Testing 87

6.2.1 Authentication

Tests were carried out on the authentication system to ensure the authentication system was
working as expected. The expected outputs were users being stored in the database, helpful
errors being provided to users and the users being directed to the flow to begin linking their
bank institutions.

Test
No.

Description Input
Expected
Output

Actual Output Comments

1 User Login &
Registration – error
handling

Leave input
fields blank

Errors
provided to
users

Errors are
provided on
each input
field

Working as
expected

2 Error handling on
register – user cannot
register with existing
email

Register an
account with
an existing
email

Error provided
to user – user
with email
already exists

Error thrown
– user already
exists with
that email

3 Error if user tries to set
passcode with letters

Input a
passcode as a
string when
registering

Error to user –
that passcode
can only
contain
numbers

Works as
expected,
user is not
allowed
register if
passcode
contains
letters

An error
saying “this
field is
required” is
still present
when the user
has typed in
the input

4 User gets stored in the
database after
registering

Register a
new user

User gets
stored in the
‘users’
collection in
MongoDB

User gets
stored in the
user’s
collection

5 User registers and link
account flow begins

Provide
correct details
in register
form, select
bank and
begin flow

User is
brought to
screen
showing they
have linked
account
successfully

Issue when
the account
selection
screen loads –
accounts are
not loaded,
and refresh is
required

Still using test
sandbox
finance bank
accounts for
testing
purposes

6 User with linked
accounts gets directed
to the home screen
after login

User logs in to
their account

User is
directed
straight to the
home screen

User gets
directed to
home screen

A React
warning is
displayed
when the
screen loads

7 User that has no linked
account gets directed to
link account flow after
login

User does not
finish linking
accounts
flow. Then
the user tries
to login again

User gets
directed to
the link
accounts flow

Works as
expected.
User gets
directed to
link account
flow

Bug was
noticed
during this
process – on
register,
spaces are
allowed in
email

Testing 88

6.2.2 Navigation

Tests were conducted on the navigation of the application to make sure the user-flows were
working and not complicated. Various tests were carried out to test the overall navigation of
the user interface to ensure the navigation worked as expected.

Test
No.

Description Input
Expected
Output

Actual Output Comments

1 Logging out of account User taps on
‘Logout’
button

User
redirected to
‘welcome’
screen.
Session is
deleted from
database

User
redirected to
welcome
screen.
Session was
deleted from
database

A React
warning was
given on
welcome
screen on
some logouts

2 User is navigated to
‘Savings Index’ when
they tap on 2nd icon in
bottom tab navigation

User taps on
icon in bottom
navigation

User is
navigated to
Savings Index
screen

Works as
expected.

3 User is navigated to
screen where they can
add a new item when
they tap on ‘+’ icon in
bottom tab navigation

User taps on
‘+’ button in
bottom
navigation

User is
navigated to
screen where
they can
choose to add
a new item

Working as
expected

This screen’s
design might
need to be
improved

4 User is navigated to
‘Bills index’ when they
tap on 3rd icon in
bottom tabs

User taps on
bills icon in
bottom
navigation

User is
navigated to
bills index
screen

Working as
expected

Some design
issues on this
screen

5 User is navigated to
‘Transactions index’
when they tap on the
last icon in bottom tabs

User taps on
the
transaction’s
icon in bottom
navigation

User is
navigated to
transactions
index screen

Working as
expected

6 From ‘Bills index’
screen, user can switch
to subscriptions

User switches
bills to
‘subscriptions’
by tapping
button

Switch from
bills to
subscriptions

Functionality
not
implemented
yet

7 From ‘Transactions
index’ screen, users can
filter by
category/country etc.

User presses
‘Category’ or
‘Country’ filter
button

Filter
transactions

Functionality
not
implemented.
Users can only
view
transaction
list

6.2.3 Calculation

Tests were conducted to check the calculations of the application. These tests were
performed to ensure important features of the application were working as expected in order

Testing 89

to provide a positive user experience. Some of these tests included updating the user’s total
account balance when they switched between accounts, or the calculations being performed
to update the total savings goal when the user added a new saving goal.

Test
No.

Description Input
Expected
Output

Actual Output Comments

1 User’s total account
balance is shown on
home screen

Navigate to
home screen

Total balance
should be
displayed

Total balance
is shown on
home screen

Total balance
shows for the
currently
selected
account

2 User’s transactions are
changed when account is
switched

From home
screen,
switch to a
different
account

When
account is
switched,
transactions
should be
different

Works as
expected,
transactions
are changed

Possibly
would be
easier to
notice if real
account data
was used

3 Total saving goal is
updated when a new
saving goal is added

Add a new
saving goal

Total saving
goal should
be updated
with the
previous
amount
added

Calculation
successful,
saving goal
gets updated

Bug –
warning
displayed
when user
selects icon

4 Current savings amount
is updated when user
adds funds to saving goal

Add funds to
a saving goal

The current
amount in the
saving goal
should
change

User cannot
add funds to
saving goals

If the savings
‘current
funds’ gets
updated
manually in
DB, works as
expected

5 Saving goal progress % is
updated when funds are
added to saving goal

Add funds to
a saving goal

Progress % on
saving goal
should be
updated

User cannot
add funds to
saving.
However,
progress % is
updated if
manually
updated from
the DB

When
navigating
back to home
screen, saving
goal was not
updated
instantly

6.2.4 Analysis of Functional Tests

Upon the analysis of the functional testing results, it was found that a lot of the functionality
was working as expected and met the defined requirements. These tests also highlighted
slight issues and bugs that were present in the application. Some of these issues simply
required a UI tweak and some of them required a process of debugging to resolve the issue.
Most of these issues weren’t issues that would make the app un-useable, however they
would possibly hinder the user’s experience while using the app. For example, users might
add a space in their email while registering, and since this was a bug in the app, the account

Testing 90

would be created and the user might not notice the issue, which could then lead to some
frustration when trying to log in again. After completion and analysing the functional tests,
the focus was then set on the user tests so that it could be determined if the app was easy to
use and intuitive for the users.

6.3 User Testing

User tests were performed to ensure that the app was easy to use, intuitive for all users and
provided a positive user experience overall. Firstly, the objectives for the usability tests were
decided, these objectives included determining what users enjoy about the application – such
as if it is easy to use, or if the colours in the app are pleasing. Once the objectives were
defined, the tasks could then be designed. These are tasks that the users are asked to do.
These tasks help provide a better sense of how users navigate the application and decide on
what information is important.

Revisiting the goal of the application - it was to provide users with an application that is
pleasing for users with an easy-to-use interface, making it easy for users to link multiple
financial institutions to their account and to make saving easier. When carrying out the
primary research for the application, it was found that there have been several design
problems in recent years within multiple Irish banking applications that are used. The likes of
AIB and Bank of Ireland have suffered from poor usability and design however each bank has
been striving to improve their application’s user experience. Some of these applications have
resulted in a tedious user experience at times.

Examining some of the flaws of these applications, the goal of this application is to provide
users with a simple, organized and easy to use interface and to allow users to view their
financial state within one application. The application is aimed at users that want to increase
their skills in saving money. The goal of the user tests was to help determine if any changes
would need to be made to the user interface and user flows to make it a more pleasing and
intuitive experience for the user.

6.3.1 Test Participants

There were a total of four test participants that took part in the user tests. The test
participants for the user testing tasks varied in age groups and financial literacy level. The
application is targeted at users from teenagers to adults who know how to use mobile apps
and want to make it easier to organize their finances and savings. Generally, young adults can
sometimes struggle to save money and as a result, young users would most likely be the most
active users on the application.

Getting feedback from various types of users on the application was beneficial as it pointed
out which parts of the application are most popular, which sections of the app stand out and
which parts need to be improved further.

Testing 91

6.3.2 Test Environment

The testing environment that was used to carry out the user testing consisted of the
application running on a laptop, the test participant, and the tester that explained tasks for
the participant to carry out and who recorded the feedback.

6.3.3 Test Methods

The user testing method that was decided upon was ease of use. The reason for choosing this
method is because the goal of the application was to make it easier for users to analyse their
financial data within the app and to make it easier to save money.

The test tasks were then designed, and the test participants were recruited. The tests were
then run, which involved the tester giving the participant a description of the application and
how it works, the test task would then be described to the participant and the test would
begin. As the participant attempted to complete the tasks, the tester observed the user and
noted any feedback or difficulties that were encountered. After completion of the tests the
participants were asked some post-test questions such as what they liked most/least about
the app and if they had anything they would change about the app. The testing data was then
summarized and analysed to draw conclusions and formulate any recommended design
changes.

6.3.4 User Testing Tasks & Results

Test
No.

Description of Task Comments/Feedback

1 Registering an
account, linking a
bank institution to the
app

- Likes the look of the app, register form
- Keyboard didn’t show on simulator device, had to tell them to

input through keyboard
- Wondered what type/length passcode had to be
- Bug: Accounts list didn’t show up to select account
- Found flow of linking accounts to be easy
- Warning displayed when brought to home screen
- Some users found it difficult to locate account information – it

is required to press on the down arrow rather than the whole
card

- Not much information available for account, just bank name,
account name

- When user selected account from dropdown, the popup
appeared with “Account Switched” even though it is the same
account

Testing 92

1 Finding information
about transactions

- Some users found it easy to find transactions
- Some found it difficult: the link on bottom tabs says “Recent”,

with icon. Could be misleading
- Users attempted to switch from ‘latest’ to ‘category’ or

‘country’ however this functionality is not implemented
- Users attempted to tap on a single transaction to possibly

show more details, this does not work
- Easy to distinguish between income and an expense
- Search icon is there however it does not currently work to

search
- Only shows a certain number of recent transactions

2 Navigating to profile
screen

- Some users looked at the bottom navigation tabs for a profile
link

- A user struggled to find a way to the profile. Pressing on the
hamburger icon to find the profile link may not be intuitive

- User pressed on the profile image to navigate to profile
- User pressed on the name to attempt to navigate – this is not a

link currently
- Once on the profile, users liked the minimalistic design,

showing their name and email
- These fields should be made editable
- User tried to press on the profile image to change it,

functionality not implemented

2 From the profile
screen, the task is to
add a new saving goal

- Users found it easy to navigate back to home using the back
button

- Some users used the + button within the savings card from the
home screen to create

- User tapped on the + button from the bottom navigation to
add new saving

- Limited number of icons in form
- When icon chosen, a react warning appeared. The icon did not

show up as a selected icon
- User was unsure of what the colour input was for
- Information about the saving goal was easy to find
- Fields should be editable when saving goal is selected

Testing 93

3 Setting up a bill to
track on the app

- Users navigated to bills tab to find the new bill form
- Some used the + button in navigation tabs to add new bill,

easy to find
- From the bills index screen, it was clear how to add a new bill
- Screen needs a bit more design, the calendar input particularly
- Warning shown on the screen about calendar input becoming

deprecated
- Form was easy to fill out
- Users get navigated back to home screen rather than bills

index -could be confusing
- When navigating back to the bills screen, the total amount due

is not updated – this is currently hardcoded
- Currently all new bills get put in the ‘Due’ section with a

message ‘due yesterday’ – this is incorrect as functionality not
fully implemented

- Users attempted to tap on the bill to see more
information/interact with it

- Bills should be editable
- While exploring this section, some users were curious about

switching to the ‘Subscriptions’ tab, which currently is not
implemented

4 Linking another
account to the app

- Some users attempted to find a button to link account from
the accounts action sheet

- Users used the + button from the bottom tabs to find an
option to link account

- Process to link account was easy to remember
- Using real accounts might be less confusing than test accounts
- Users were navigated back to the + option screen, confusing -

unsure if the process was successful
- Bug: when navigating back to home screen to find new

account, it still shows the first account, and a screen refresh is
required

- Switching account is easy, feedback with a modal is good,
possibly add to modal which account has been selected

- When trying to compare accounts it was confusing, as the
balances are the same, transaction names are the same also

6.4 Conclusion

In conclusion of this chapter, it has helped gain an insight into what parts of the app worked
as expected and highlighted any slight issues or bugs within the app. The functional tests
helped identify if the pre-determined requirements were met and the user tests helped
identify if the app was intuitive and easy to use. Both types of tests combined helped come
up with some slight refinements for the app. The testing of the application showed why it is
so important to conduct various tests on the app while it is in the development phase as it
helps pinpoint any bugs that need to be addressed within the app to make it ready for
production.

Project Management 94

7 Project Management

This chapter discusses how the project was managed overall to make sure that there was
steady and consistent progress made throughout the course of the project. Good project
management was important to ensure that each deadline was met. The project was
developed and managed through a number of stages, starting from the proposal/idea phase
where the idea for the project was structured, to the requirements phase to determine the
project’s requirements, then the design phase where the designs were outlined to meet the
requirements. The next stages were the implementation and testing phases. There were
numerous project management tools that were used to ensure that the project was being
developed efficiently. The tools that were used to manage the project were GitHub, a Kanban
board on Microsoft’s Tasks app, and a journal to record the progress made.

The project was developed over 4 months, from January 2022 to May 2022, with the SCRUM
methodology being used. SCRUM is a framework for project management that emphasizes
teamwork, accountability, and iterative progress towards a well-defined goal. Sprints are an
agile software development concept used by SCRUM. A sprint is a period of time when the
software development is done. Each sprint is usually short – one to two weeks and during
each sprint you can work on completing items from the product backlog. Each sprint can end
with a sprint review and then you choose another item from the backlog to develop. Sprints
are continued until the deadline has passed.

The project was divided into 8 sprints overall, with each sprint lasting 2 weeks. At the
beginning of each sprint, different items from the project backlog would be worked on and
the aim was to have them completed by the end of the sprint. At the end of each sprint, a
review would take place to establish how it went and if more time was needed for any
particular tasks and what was required next. This schedule of sprints made it much easier to
plan out and develop the application.

The main sprint deadlines were the following:

1. 23/01/22 - Requirements, Research & Prototype Development
2. 06/02/22 - Design Document v1
3. 20/02/22 – Implementation Document v1
4. 24/02/22 – Interim Presentation
5. 06/03/22 – Final Design Document
6. 30/03/22 – Final Implementation Document
7. 03/04/22 – Testing Document v1
8. 17/04/22 – Thesis v1
9. 08/05/22 – Final Thesis & Application versions
10. 10/05/22 – Project Presentations

Weekly meeting were carried out to discuss the progress of the project and any issues that
were faced, and the project deliverables. The project was planned and managed using the
Kanban method and using Microsoft’s Tasks app. This is where the items for the project
backlog could be stored and there was a list for the items to-do in the current sprint, the

Project Management 95

‘Doing’ list that contained items that were currently being worked on, and the ‘Done’ list for
items that were completed (Figure 98).

Figure 98 Microsoft Planner

7.1 GitHub

A repository on GitHub was created to host the code base and enable a version control system
for the app (Figure 100). GitHub is a platform where you can host your code and is used for
version control and collaboration. It lets you and others work on projects anywhere at any
time (GitHub, 2022). The project was developed on GitHub using a number of branches. A
branch would be created for most new features being developed on the app, for example a
branch called ‘Authentication’ where the authentication system would be worked on.
Branching is the way to work on different versions of the repository at the same time. One
the feature was complete; the branch would be merged into the main branch. Using branches
on a repository is a positive way to develop because they allow developers to develop
features, work on bug fixes and safely experiment with new ideas within a contained area of
the repository (GitHub, 2022).

Figure 99 GitHub Branches

Project Management 96

Figure 100 GitHub Repository

Each time an addition or change to the codebase was added a commit would be made to the
repository. The frequency of these commits can be seen in Figure 101 below. This chart helps
visualize the development of the project by showing the number of commits made
throughout the course of the 4 months. It is visible that the highest point in the chart is in the
month of February, which as described above, this was around the time of the
implementation sprint - where a lot of the coding was done.

The chart shows that the number of commits decreases after February. This is due to the fact
that a lot of the app’s main functionality had been implemented, and that the focus then
switched to testing the app, while making small changes to the code and integrating less
important functionality. A lot of documentation for the app was then completed and updated
at this stage.

Figure 101 Commits made to the repository over 3 months

Project Management 97

7.2 Journal

A journal was used to document the development progress throughout the course of the
project. The platform that was used is called Notion. Notion is an application that provides
components such as notes, databases, Kanban boards, wikis, calendars and reminders.

Journal entries would be made at the end of most days/weeks to describe what progress was
made, how things went and any difficulties that arose. Using the journal was good practice as
it clarified what was complete and what was to be completed throughout each sprint.

7.3 Conclusion

The project was managed well throughout each sprint and as a result, a working application
has been produced that meets the project requirements. Working on the project while being
supervised has led to the development of a number skills in relation to project management
such as communication, teamwork and leadership skills. Using professional methods and
tools such as a journal, and project management tools like GitHub has provided valuable
experience in working on a large software project. It was required to develop the application
in a timely manner while using the SCRUM methodology which as a result helped improve
project management skills overall.

Conclusion 98

8 Conclusion

This chapter discusses and summarizes how the development of a major software project
went overall, any limitations that were encountered and the strengths and skills that were
developed.

8.1 Project Summary

The overall goal of the project application was to research into a topic and then design,
implement, test and deploy a full-stack application that would attempt to solve a problem.
The application was to have numerous features which would help users to manage their
finances overall, and the application was to be designed to become a useful tool which could
be deployed for users to use on their mobile phones in the future.

The project began with researching into a topic and writing a literature review on the
information available online that relates to the topic. The topic was around the area of mobile
banking applications, user experience design and how the two relate to each other. The idea
for the project was then developed after this stage. The requirements for the project were
determined after performing research into various similar mobile applications that related to
the project idea. The possible technologies that could be used to develop the application were
then researched and the MERN stack was the chosen stack to use. The design phase of the
application then commenced in which the system architecture was designed, as well as the
user interface design of the application. This phase of the project was beneficial as it provided
a better understanding on the user flows and design patterns required throughout the
application. The implementation phase then consisted of the outlined designs being
implemented through code. Once the major features of the application were implemented,
the testing phase of the project began. This phase consisted of numerous types of tests – both
user and functional tests, which provided an overview of how well the application functioned
and outlined any bugs that were present.

As stated in the research section of this document, there are certain aspects of a mobile
application that can be used to provide a better user experience within banking apps. One
method that can be used is gamification which is the use of game principals and mechanics
being applied to something to motivate and encourage users to perform activities. Another
method is the use of personalisation within the app, which is when users can customize
certain aspects of an application to their liking. The use of personalization was implemented
in this project, by allowing users to customize their saving goals as they can choose a colour
and an icon which represents the saving goal. An example of this personalized item can be
seen in Figure 81 above. Gamification methods were originally planned to be integrated
within the app however this was not possible due to the time restraint. This could be a
possible area for development in the future work of the app.

8.2 Future Work

This section describes the possible future work that could be done on the application and the
limitations that were encountered throughout the previous development process. This
application could be further developed in numerous ways, as an application is constantly in a
stage of development iterations and therefore is never usually a finished product. There is

Conclusion 99

potential for more features to be added and refined throughout the app, updates that can be
made from user testing and bug fixes and also design updates to the user interface.

8.2.1 Savings Feature integrated into real bank accounts

One of the main ideas/features of the application was to allow users to create and manage
saving goals. There were limitations to this as the user can currently only create the saving
goal, however they cannot add or withdraw funds from their bank account to and from the
saving goal. The idea behind this feature was to allow the user to add funds from their main
account into the saving goal and then they cannot access these funds from their main bank
account. This is to encourage better saving habits and discipline. This is a possible future
development that could be integrated into user’s real bank accounts.

8.2.2 Current features enhanced

There are a number of features currently working within the application with most of them
having basic functionality. These features could be further developed to improve the apps
overall functionality and usability. The transactions feature could be improved by adding
filters to the transactions, allowing users to filter transactions by category, country etc. as
currently the users can only view a list of the transactions. A feature could be added to the
transactions where when the user taps on a single transaction it shows additional information
about the transaction. The bills and subscriptions feature could also be developed further, to
allow users to perform CRUD functionality on their bills and subscriptions.

8.2.3 Modifications from User Testing results

Following the results and analysis from the results of the user testing, there are multiple
improvements that can be made to the app. These improvements would be made to the
current functionality to ensure each feature works as expected and to make sure that the user
experience is positive. There are also tweaks that would be made to the user interface to
make the app intuitive for each user. It was found that there were various bugs throughout
the application such as warnings being shown to the user that is from the React App. These
bugs should be resolved to make it a smooth user experience and these fixes would be a
priority. Some of these modifications would involve simple UI tweaks which could overall
make some of the user flows less confusing and more natural.

8.2.4 Further User Testing

The process of user testing throughout the application has been beneficial, since it has
provided a much clearer picture on how well each feature in the application functions, as well
as how the user experience and user flows are in the app. When new features are added to
the app it is important that each feature goes through a series of functional and user tests.
Carrying out these tests on new features is an important part of the development process as
it ensures the features provide a good experience for the users using the application.

8.2.5 Providing support for multiple countries

Currently the application only supports users from Ireland. When users are choosing what
bank to link, a list of banks in Ireland are provided to the user. This is because when the

Conclusion 100

request is made to Nordigen APIs institutes endpoint, a “country” parameter is required in
the URL. As shown in Error! Reference source not found. below, the country is set to ‘ie’ for
Ireland. In a future development, this country parameter could be programmed to change
based on the user’s country.

Figure 102 Bank List for Ireland

8.2.6 Providing the app for different mobile devices

Another possible further development of the application would be to develop and test it for
multiple mobile devices. While developing the app, a simulator was used for testing the app
and the simulator device was an iPhone 13 Pro Max. It is important that mobile apps are
compatible for both iOS and Android devices, and for phones of different sizes. This process
would involve testing the app on different devices for both iOS and Android, and tweaking
the code to make it responsive for different device sizes.

8.3 Limitations

A few limitations became present while developing the app. The main limitation for the
project was related to the API that was used. The Nordigen API provides different endpoints
that allows developers to implement their account information solution in their applications.
The endpoints provide accounts, account information and transactions. The information
provided from these endpoints were limited and did not provide many endpoints to allow
advanced features in the app such as filtering transactions. This was a limitation since the app
relied on the APIs information for the majority of the functionality.

Another limitation for the project would be the time restraint. The timeline for the project
was scheduled over a period of 4 months. Although a functioning mobile app has been
produced within this timeframe, more time for the development of the app would be
beneficial. According to various studies, a mobile app usually takes between 3 to 9 months to
be developed for public release. This would generally just be the period for the
implementation stage of the app, not including the research and design stages of building a
mobile app (Moazed, 2015). For this major project, the 4-month timeframe included the
research, design, implementation and testing phases.

8.4 Learning Outcomes

This project covered several aspects of the development of a major software project such as
researching, designing, implementing, and testing a mobile application. The process in which
the application was developed, with the project being developed and managed over a given
period of time and in different sprints with a supervisor providing support and input, provided
experience of what it is like to work on a real-world software project at a company. Some
aspects of the project were not covered in the course curriculum, which required me to work
on my own initiative and self-teach myself new skills and concepts. This is very beneficial as
many successful software developers must work on their own initiative to problem-solve and
teach themselves new things. Working on this project has improved my skills in programming,

Conclusion 101

researching and writing, my design skills, time-management and communication skills. I have
enjoyed working with the technologies that were used and I have become more
knowledgeable on each technology. I can now say that I would be comfortable working on a
full MERN stack application, from the initial idea/researching phase to the deployment of the
product.

8.5 Final Words

To conclude, applications that have a pleasing user interface and that are easy to use for users
can make managing finances easier and more enjoyable for users. Some banking applications
can tend to be confusing to users and as a result, make finances and numbers difficult for
some users to understand and work with. This application could be used as a tool in the future
with further development and testing and there are many directions in which the
development of the app can take. User’s bank accounts could be integrated with this app to
allow users to manage their finances and savings from a single application. Overall, the
development of this project has been a joy and has taught me various new concepts and skills,
and has improved my current skillset, and I would enjoy seeing how far the application could
be taken in future developments.

References 102

9 References

Amin, M., Rezaei, S., & Abolghasemi, M. (2014). User satisfaction with mobile websites: the
impact of perceived usefulness (PU), perceived ease of use (PEOU) and trust. Nankai
Business Review International.

Azwa, M., & Azrul, H. J. (2017). User Experience Design (UXD) of Mobile. Faculty of Computer
Science and Information Technology, 197-200.

Babrovich, N. (2017, July 10). How to use gamification in banking to engage customers and
employees. Retrieved from Scnsoft.com:
https://www.scnsoft.com/blog/gamification-in-banking

Batchelor, B. (2017, September 26). The History of E-Banking. Retrieved from Bizfluent:
https://bizfluent.com/about-5109945-history-ebanking.html

Bose, S. (2021, May 11). Functional Testing : Definition, Types & Examples | BrowserStack.
Retrieved from BrowserStack: https://www.browserstack.com/guide/functional-
testing

Clearbridge Mobile. (2018, December 19). How Biometric Authentication is Shaping the
Future of Mobile Banking | Clearbridge Mobile. Retrieved from Clearbridge Mobile:
https://clearbridgemobile.com/biometric-authentication-shaping-future-mobile-
banking/

Dhruw, D. (2020, November 11). ORM and ODM — A Brief Introduction - Spider - Medium.
Retrieved from Medium: https://medium.com/spidernitt/orm-and-odm-a-brief-
introduction-369046ec57eb

Dyslexia Ireland. (2020, December). Dyscalculia and Maths Difficulties - Dyslexia Ireland.
Retrieved from Dyslexia Ireland: https://dyslexia.ie/info-hub/about-
dyslexia/dyscalculia-and-maths-difficulties/

Enginess. (2016, September 14). How Designing for Mobile is Different from Desktop |
Enginess Insights. Retrieved from Enginess.io: https://www.enginess.io/insights/6-
ways-designing-for-mobile-sites-is-different-from-desktop

Finextra Editorial Team. (2019, April 7). 3 Trends That Will Shape Digital Banking’s Future.
Retrieved from Finextra Research: https://www.finextra.com/blogposting/17038/3-
trends-that-will-shape-digital-bankings-future

GitHub. (2022). About branches - GitHub Docs. Retrieved from GitHub Docs:
https://docs.github.com/en/pull-requests/collaborating-with-pull-
requests/proposing-changes-to-your-work-with-pull-requests/about-branches

GitHub. (2022). Hello World - GitHub Docs. Retrieved from GitHub Docs:
https://docs.github.com/en/get-started/quickstart/hello-world

GoodID team. (2021, April 26). Biometric data. Retrieved from Good ID: https://www.good-
id.org/en/glossary/Biometric-data/

Hennessy, N. (2021, March 7). Changes in banking landscape only just beginning. Retrieved
from Irish Examiner: https://www.irishexaminer.com/news/spotlight/arid-
40238024.html

IBM. (2021, March 04). IBM Docs. Retrieved from Ibm.com:
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case

IBM Cloud Education. (2021, April 6). rest-apis. Retrieved from Ibm.com:
https://www.ibm.com/cloud/learn/rest-apis

Joo, H. (2017). A Study on Understanding of UI and UX, and Understanding of Design
According to User Interface Change. International Journal of Applied Engineering
Research.

Keivani, S. F., Jouzbarkand, M., Khodadadi, M., & Sourkouhi, K. Z. (2012). A General View on
the E-banking. International Proceedings of Economics Development & Research, 62.

KPMG. (2019). THE FUTURE OF DIGITAL BANKING. KPMG.
Material Design. (2022). Material Design. Retrieved from Material Design:

https://material.io/design/color/the-color-system.html#tools-for-picking-colors
Meadows, M. (2019, August 23). The State of Mobile Banking and Digital UX. Retrieved from

https://www.finastra.com/viewpoints/articles/state-mobile-banking-and-digital-ux
Moazed, A. (2015, July 29). How Long Does It Take to Build an iOS or Android Mobile App?

Retrieved from Applico | Platform Experts: https://www.applicoinc.com/blog/long-
take-build-ios-android-mobile-
app/#:~:text=It%20will%20usually%20take%203,of%20building%20a%20mobile%20a
pp.

NALA. (2019, October 8). Literacy and numeracy in Ireland - Nala. Retrieved from Nala:
https://www.nala.ie/literacy-and-numeracy-in-ireland/

Perea, P., & Giner, P. (2017). UX Design for Mobile. Packt Publishing Ltd.
Rahi, S., Ghandi, M. A., & Alnaser, F. M. (2017). Predicting customer’s intentions to use

internet banking: the role of technology acceptance. Management Science Letters,
513-524.

Rodrigues, L. F., Oliviera, A., & Costa, C. J. (2016). Does ease-of-use contributes to the
perception of enjoyment? A case of gamification in e-banking. Computers in Human
Behavior, 114-126.

Statista Research Department. (2021, October 19). Online banking users worldwide by region
2020 | Statista. Retrieved from Statista:
https://www.statista.com/statistics/1228757/online-banking-users-worldwide/

Svilar, A., & Zupančič, J. (2016). User Experience with Security Elements in Internet and Mobile
Banking. Organizacija, 49.

The Interaction Design Foundation. (2014). What is Mobile User Experience (UX) Design?
Retrieved from The Interaction Design Foundation: https://www.interaction-
design.org/literature/topics/mobile-ux-design

The Interaction Design Foundation. (2021). What is User Experience (UX) Design? Retrieved
from The Interaction Design Foundation: https://www.interaction-
design.org/literature/topics/ux-design

W3 Schools. (2022, January). React useState Hook. Retrieved from W3Schools.com:
https://www.w3schools.com/react/react_usestate.asp

Wang, M., Cho, S., & Denton, T. (2017). The impact of personalization and compatibility with
past experience on e-banking usage. International Journal of Bank Marketing, 45-55.

Appendices 104

10 Appendices

10.1 Appendix A (Survey)

Appendices 105

Appendices 106

10.2 Appendix B (Paper Prototypes)

Appendices 107

Appendices 108

Appendices 109

10.3 Appendix C (Survey Documents)

10.3.1 Test Introduction

Appendices 110

10.3.2 Consent Form

Appendices 111

10.3.3 Test Tasks

Appendices 112

10.3.4 Post-Test Questionnaire

Appendices 113

10.3.5 Testing Notes

Test
No.

Description of Task Comments/Feedback

1 Registering an
account, linking a
bank institution to the
app

- Likes the look of the app, register form
- Keyboard didn’t show on simulator device, had to tell them to

input through keyboard
- Wondered what type/length passcode had to be
- Bug: Accounts list didn’t show up to select account
- Found flow of linking accounts to be easy
- Warning displayed when brought to home screen
- Some users found it difficult to locate account information – it

is required to press on the down arrow rather than the whole
card

- Not much information available for account, just bank name,
account name

- When user selected account from dropdown, the popup
appeared with “Account Switched” even though it is the same
account

1 Finding information
about transactions

- Some users found it easy to find transactions
- Some found it difficult: the link on bottom tabs says “Recent”,

with icon. Could be misleading
- Users attempted to switch from ‘latest’ to ‘category’ or

‘country’ however this functionality is not implemented
- Users attempted to tap on a single transaction to possibly

show more details, this does not work
- Easy to distinguish between income and an expense
- Search icon is there however it does not currently work to

search
- Only shows a certain number of recent transactions

2 Navigating to profile
screen

- Some users looked at the bottom navigation tabs for a profile
link

- A user struggled to find a way to the profile. Pressing on the
hamburger icon to find the profile link may not be intuitive

- User pressed on the profile image to navigate to profile
- User pressed on the name to attempt to navigate – this is not a

link currently
- Once on the profile, users liked the minimalistic design,

showing their name and email
- These fields should be made editable
- User tried to press on the profile image to change it,

functionality not implemented

Appendices 114

2 From the profile
screen, the task is to
add a new saving goal

- Users found it easy to navigate back to home using the back
button

- Some users used the + button within the savings card from the
home screen to create

- User tapped on the + button from the bottom navigation to
add new saving

- Limited number of icons in form
- When icon chosen, a react warning appeared. The icon did not

show up as a selected icon
- User was unsure of what the colour input was for
- Information about the saving goal was easy to find
- Fields should be editable when saving goal is selected

3 Setting up a bill to
track on the app

- Users navigated to bills tab to find the new bill form
- Some used the + button in navigation tabs to add new bill,

easy to find
- From the bills index screen, it was clear how to add a new bill
- Screen needs a bit more design, the calendar input particularly
- Warning shown on the screen about calendar input becoming

deprecated
- Form was easy to fill out
- Users get navigated back to home screen rather than bills

index -could be confusing
- When navigating back to the bills screen, the total amount due

is not updated – this is currently hardcoded
- Currently all new bills get put in the ‘Due’ section with a

message ‘due yesterday’ – this is incorrect as functionality not
fully implemented

- Users attempted to tap on the bill to see more
information/interact with it

- Bills should be editable
- While exploring this section, some users were curious about

switching to the ‘Subscriptions’ tab, which currently is not
implemented

4 Linking another
account to the app

- Some users attempted to find a button to link account from
the accounts action sheet

- Users used the + button from the bottom tabs to find an
option to link account

- Process to link account was easy to remember
- Using real accounts might be less confusing than test accounts
- Users were navigated back to the + option screen, confusing -

unsure if the process was successful
- Bug: when navigating back to home screen to find new

account, it still shows the first account, and a screen refresh is
required

- Switching account is easy, feedback with a modal is good,
possibly add to modal which account has been selected

- When trying to compare accounts it was confusing, as the
balances are the same, transaction names are the same also

