7\
ladt ™’

DUN LAOGHAIRE

AbyssScape — VR Dungeon Escape

Aisling Kelly-Brophy

N00183696
Supervisor: Catherine Noonan
Second Reader: Joachim Pietsch

Year 4 2021-22
DL836 BSc (Hons) in Creative Computing

Abstract

The aim of this project was to examine how such aspects as lighting and setting can create an
immersive experience in virtual reality. Specifically, this was achieved through the creation of a dark
and fantastical virtual reality experience, in which the player could solve challenges placed before
them to escape their environment. Such virtual reality experiences have proven popular in the last
few years; games such as The Room VR: A Dark Matter (FireproofGames, 2019) and A Rogue Escape
(Armor Games Studios, 2021) have continued to attract positive reviews (Mairi, 2022). Furthermore,
the fantasy genre, in particular that of medieval fantasy, has experienced a resurgence in the last ten
years or so; thanks to the enduring popularity of the roleplaying game, Dungeons & Dragons
(Wizards of the Coast, 1993). In light of this knowledge, it was decided, in examining these
properties of immersion, that a virtual reality dungeon escape game would be created, utilising low-
poly assets and stylised graphics.

The game was developed in the Unity engine, and coded using C#. Utilities such as Unity’s inbuilt XR
Toolkit were also used. The steps involved in making the game were background research,
requirements gathering, and design; followed then by implementation and testing. Testing involved
both functional testing and user testing. Results from these sessions highlighted areas for
improvement, or for further development. Aspects to be considered for future development could
include the expansion of the in-game environment, the provision of even more puzzles/challenges,
and the implementation of more interface features, such as a pause menu.

Acknowledgements

| would like to extend my thanks to the many people who showed support and offered advice
throughout the duration of this project. In particular, | would like to thank my project supervisor,
Catherine Noonan, and my second reader Joachim Pietsch, for their help, communication, and
overwhelming support throughout AbyssScape’s development.

| would also like to thank those who agreed to participate in my surveys, interviews, and usability
testing. In particular, | would like to extend my heartfelt thanks to the members of IADT’s Cosplay
and RPG societies. Your knowledge and passion for games and interactive experiences has provided
me with the much-needed motivation to complete such a large-scale project.

Lastly, | would like to extend my utmost thanks to family, friends, and anyone else who supported
me in any way possible throughout this project. Your unwavering support and loyalty have seen me
through the project’s most difficult phases, and | cannot thank you enough.

The incorporation of material without formal and proper acknowledgement (even with no
deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should
document this in your submitted work and if you have any doubt as to what level of
discussion/collaboration is acceptable, you should consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone else,
which may well bring you under suspicion. Do not to leave copies of your own files on a hard disk
where they can be accessed by other. Be aware that removable media, used to transfer work, may
also be removed and/or copied by others if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to
the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook.
Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual assessment. This
would include jointly developed solutions as well as one individual giving a solution to another
who then makes some changes and hands it up as their own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own
work.

Student :

(S\ ijn’ei' q‘ﬁlw?)/t
R

(

Failure to complete and submit this form may lead to an investigation into your work.

Table of Contents

1
2

Ta 1A ge e [ot i o] oINPT PP PRSP 1
RESEAICH ..ttt et e st e st e e st e e h e e e s bt e e bee e s be e e ne e e eareesneeesareean 3
21 INEFOAUCTION ittt ettt b e s ettt et e e bt e sbeesaeesanesbe e beennes 3
2.2 (DT o W] g Tol=] o) £ TP P PP PPTUPPPPOPORE 3
2.2.1 Design Concepts in Everyday Life........oociiiiiciiie et 3
2.2.2 Design Concepts as Applied t0 GAMES......ccovciiiiiiiiiieieiiteeeciree e e saaee e 5
2.3 AESENETICS ettt sttt bbb ne 6
2.3.1 Aesthetics iN EVeryday Life.. ...ttt e e 6
2.3.2 Aesthetics as APPliEd 0 GAMES......cccccuiiiiieiiee ettt e e e etre e e e srtee e e eearaeeeeanes 7
2.4 Future INNovations in IMMErSION.......coociiiiiiiiiee e e s e e e e 8
2.4.1 AUEMENTEA REAIIEY ..cciiiiiee et et e e e e e e ate e e e ebtaee e eenraeaeeanes 8
2.4.2 VLo (I 1=T |11 Y PSPPSR 8
2.5 CONCIUSION ..ttt st ettt e b e s bt e sae e e et e et e e beesbeesheesabesabesabeebeebeenes 9
R GUITEIMENTS ittt ettt e e e e e s sttt e e e e e s s s s aabtaeeeeeessssssbtneaeeesssasnsseaeaeens 10
3.1 INEFOAUCTION Lttt ettt sttt et b e s b e sbeesae e et e e beesbeesaeesanenas 10
3.2 ReqUIremMents Satheringccuueii i e e e ee e s s reeas 10
3.2.1 SIMIlar @PPlICATIONS ...eiiie e et eat e e e et a e e e e ata e e e enraeeeeanes 10
3.2.2 INEEIVIEWS. ..ttt 13
3.2.3 Y UL 13
33 RequiremMents MOAEIING..........uei e e e e e bae e e e abee e e e areeas 14
3.3.1 PISONASiiiiiiiiiiiiiii s 14
3.3.2 FUNCLIONAl FEQUITEMENTS...cccciiiie ettt e et e e e e bre e e e abe e e e earae e e enraeas 16
333 Non-functional reqUIrEMENTScccuiiiiiiiee e e 17
3.34 L0 LY O R =T 1 =Y = - [0 N 17
3.4 [T 1] o111 2 PSP 18
35 (6073 Tol [To 7o H TSP UORTOPSRP 18
D= 1= o 1S RN 20
4.1 [aiagoTe [V Tt To] o N TSP UPRTOURRORROt 20
4.2 o4 =T 0 0 T D LT P o N 20
4.2.1 JLIE=Tel 0] 0T] Fo T=4 1TSS 20
4.2.2 SEUCLUIE OF UNITY . ceiiiiiii ettt et e et e e e e bte e e s sbee e e e eanes 22
4.2.3 DR T T =Y o =Y o 3N 25
4.2.4 o Tol ST o [Ty =4 o TSP 26

4.3 USEr INTEITACE UESIEN c..eeeeiieeeieee ettt e et e e te e e e et e e e e e abeeeeeabaeeeenbeeeeeenseeas 27

43.1 VAT ATy = 10 L= 27

4.3.2) 87 LI 0o 1SRRI 28
433) 7o) 0¥/ oTo -1 e [N USSRt 33
43.4 LY I 1T = o TSRO 36
4.3.5 ENVIFONMENT....oiiiiiiiiii e 39
4.4 CONCIUSION ...ttt ettt e st e st e e ab e e s bt e e s ab e e sabeesbeeesabeeesabeesaseesaneeesareenn 43
[aaT o1 [T =T a1 - 4 (o o NP PSP 44
5.1 [a1ageTe [¥To1dTe] o N PSPPSR P PR UPRTOUPTORRPIOt 44
5.2 SCRUM MELNOUOIOZYccietiiee ittt ettt ete e e et e et e e e e tte e e s ebae e e e ebteaeeestaeeesanes 44
53 Development ENVIFONMENT.......coii ittt e e e e s sree e e s abee e s e sabeeessnareeas 45
54 K] o112 St PN 46
54.1 RESEAICR ..ttt ettt e st e e st e st e e bt e e s bt e e sa b e e sbe e e naeeesbeeenans 46
5.4.2 ReqUIremMents Gathering.......c.uei i e e e et e e e arae e e e areeas 46
5.4.3 Creating @ SAMPIE VR ROOMuiiiiiiiiiee ettt ettt sttt e e s svte e e s vtae e s sntae e s snteeaesanes 46
5.4.4 Revisiting Previous Tutorials & EXampPlesceeeciieeeiiiiee e 47
5.5 Y o] 4 101 A 2P PP PP ORI 47
5.5.1 Conducting FUrther RESEAICHcoocviiiiiciee ettt e e 47
5.5.2 Beginnings of DESIZN Phaseccocciiiiiiiiiiieceee ettt 48
5.6 K] o1 1) . N 48
5.6.1 LY I 1T = o PR 48
5.6.2) de] oY oToT-1 o 1o Y- SRRSOt 48
5.6.3 MaIN IMENU Ul ..ot 48
5.7 Y o] 0L A PP UPPP PRI 51
57.1 Programming the Menu Functions & Repairing the XR Origincccceceveeeeviieeeennen. 52
5.7.2 Building the Game ENVIFONMENT.......cooiiiiiiiiiiiiecectee et esee e e e s e e s 54
5.7.3 TeStiNg the WOIf PUZZIE.....oooeeee ettt e et e e e 57
5.8 Y o1 512 o= TR 61
5.8.1 Expanding the Game ENVIrONMENtooiiiiii it 61
5.8.2 Implementation of Socket Functionality........cccceeeeiiieiiiciieecce e, 64
5.8.3 ANIMAting the Cell DOOK.......uiiiieee e e e e e e e e e e s e e narreeeeeas 67
584 Transferring XR Origin t0 GamMe SCENE.......ccciuiiieiiiieie ettt ree e e srre e e 67
5.8.5 Coding the Options FUNCLIONAIILYeevveiiieeiiiieee e 70
5.9] o141 1) ST PP PPPPPPPPPTPPPPPPPR 74
5.9.1 Implementation of RiddIES QUIZcoeecuiiieeiiiiee e e e e 74
5.9.2 Configuration Of DOOKS........uiiiiiiiiie e et e e e e rrtae e e srreeeeenes 82

5.9.3 Adding a Collider to the Player e 83

5.9.4 Modifying the Plank/Key INteractioncccueecueeecieeiecieecciee et e 84

o0 O Y o o [o | A PSP P TP PP ORI 85
5.10.1 Optimising the GAmEueviiiiiiee ettt et e e e e be e e e e eareeas 85
5.10.2 Implementing @ ViCtOry SCrEENcuuuiii ittt rtee e e s evee e e e e e s 86
5.10.3 Creating @ TeST BUIld ...ccouvieeieiee ettt e 87
5.10.4 Functional and User TESEING.......cceiecieiiiriiee ettt eseee s sree e s e s s svee e s s 87

B.L1 SPIINT 8 ittt b e sttt e b e h e s he e s ae e bt e e bt e be e e re e st e e e e eneeen 88
o701 S R 0o | T [T SRS TOPPTRUPPOTOPRRPPRIOt 88
5.11.2 Rotation of Attach POINES....cc..oiiieiieiee e 89
5.11.3 Further OptimiSationsceiiiciiiiiiiiiie st e e e e e e bee e e s sbae e e s nareeas 90

5.12 CONCIUSION .ttt ettt s bttt et e e e b e s bt e s ae e sae e st e e b e e bt e nbeesmeesneeeneeentean 90
B =] 1] = 2SO PPPT R PPRPPP 92

6.1 INEFOAUCTION Lttt ettt sttt et e b e s b e sbe e sae e et e e beesbeesaeesanenas 92

6.2 [T Ta Vot oY o F= Y I =Ty d o = PRSP 92
6.2.1 Y Yo TSV A S =T 1 = = Lol = RPN 92
6.2.2 MOVEMENT & CONTIOIS ..eeiiriiiiiieiee ettt ettt st e s b et e sbe e e saees 94
6.2.3 ACTIVITIES et 94
6.2.4 Discussion of Functional Testing RESUILSc.ueeiviiiiiiiiiiei e 96

6.3 L LY =) =N 96
6.3.1 INEFOAUCTION Lttt st s esre e sreesane e 96
6.3.2 Ease of Learning vs. Ease of Use TeSTING.......ccvevieiiiii i 96
6.3.3 USEI TESTING TASKS...uiiiiiiiiiieceee ettt e e e e e bee e e et e e e e aba e e e earaee e eearaeas 97
6.3.4 T [I - T A ol oY= 1 g £ SRR 97
6.3.5 TeSt ENVIFONMENT ..ottt 98
6.3.6 Analysis of Data and Recommended Design Changes........cccveevcvveeeriiveeeeicveeeescveeens 98
6.3.7 Personal REFIECHION ..ottt s 99

6.4 TESEING MAtEIIAIS. . .eei i e e et e e s sta e e e e atae e e esabbeeesasaaeeens 99

6.5 (6073 Tol [To 7o H TSP UORTOPSRP 99
Project ManagemENnT e et aaaaanaanaas 100

7.1 [ai Ao Te [¥T1dTo] o WU TP PPRTOTSTI 100

7.2 [oY [=Tot fl ad o F= 1 YRR 100
7.2.1 0T oo LY | USSR 100
7.2.2 RESEAICN ...ttt et e en 100
7.2.3 =0 [1T =T g 0= 3N 100
7.2.4 DT =4 o 1SN 100

7.2.5 Ty aY o] (=T g U= o = 1 4 o o ISR 101

7.2.6 LIS 1= N 101

7.3 SCRUM MEthOUOIOZY ...ceiieiiiiiiiiiiieieitie ettt e et e e e satae e s s sitee e e ssaba e e e ssnbaeeesnasseeeeas 101
7.4 Project Management TOOIS.......cooiiiiiiciee ettt e et e e e et e e e e bae e e s enae e e e earaeas 101
7.4.1 TIEITO ettt et s bttt s b e st e e s b e e s b e e s reeeneeesbeeeane 101
7.4.2 GIEHUD ettt et sttt e be e sbeesaee e 102
7.4.3 o] g s 112\ (o =K TSR 103

7.5 REFIECHION ...ttt et e b e s aee st e st e e b ns 104
7.5.1 YOUr VIEWS ON the PrOJECT c.uuviiiiiiiie et e e s 104
7.5.2 Completing a large software development project.......ccccceeeeviieeeeiiieeecccieee e, 104
7.5.3 WOrking With @ SUPEIVISOI ...cciiieiiieicciiiie ettt e e s ae e e s areeeeas 104
7.5.4 TECNICAI SKIllS...neeetieiieeee et 104
7.5.5 Further competencies and sKillsccueiiiiiiiiiiiiii e 105

7.6 CONCIUSION ..ttt ettt et b e s bt sat e et e et e e b e e sbeesatesabesabeenbeenbeens 105

8 BUSINESS OPPOITUNITIES c.uueiiiiiieiieeieiiitee ettt e et e e e s s s st e e e e e e s s sssabreeeeeeesssnsasnneaeeeens 106
8.1 Paid DOWNIOAM ...ttt sttt et s h e st bbb 106
8.2 VRChat/PUDBIIC VR SPACESccvietieieeteecteeetee ettt eteesteesteesttesbeebeebeestaesaaesabeeabeensaessaestnesanenns 106
8.3 INteractive SIMUIGLIONSoouiiiiieee et s 106

1 B @o T Tol [V1Yo o FO R OO O T T O PO TP P PP PTOPPRTOPPRO 107
REFEIEINCES ...ttt b e s at e st e e ittt e e s be e she e e ae e sabeeabe e bt e beeabeeabeesaeeeateentean 108
F Yo7 1= o Vo [PSPPSR 114
[tem 1: INTEIVIEW RESUILS ...ttt sttt et be e st e et as 114
[tem 2: USer TESHING RESUILS ..eeiiiiiei ettt ettt e e e et e e e e bt e e e e ebteeeesbteeeeentaeaeeanes 119
Pre-test QUESTIONNAINE RESUITS ..c..ceiuiiiiiiiiiiieieee ettt 119

POSt-test QUESTIONNAITE RESUILS......uuuuerieeiiiiiiiiii b as s abaaeaaaaseaasasasasasesasssssssssnsessnnnes 121

1 Introduction

AbyssScape is a virtual reality puzzle/escape room game in which the player, finding themselves
trapped in a dark dungeon, must find a way to escape. It enables the player to locate various objects,
combine their use in different ways, and solve puzzles before reaching the exit. The target audience
for this game was envisioned as those already familiar with games and/or virtual reality, but its
simplicity means that it could also be enjoyed by those who have never played before.

Virtual reality is a new and innovative area, not only in the realm of gaming, but in many others.
Virtual reality technology has been used in areas such as real estate, tourism, and medicine
(Thompson, 2017). Furthermore, Meta’s discussion of a shared “metaverse” (Ravenscraft, 2021), a
virtual world that closely mimics our own, has brought discussion and awareness of VR technology
to the fore. Even within gaming exclusively, virtual reality applications continue to garner positive
reviews, as they immerse their players like never before (Mutterlein, 2018). AbyssScape draws on
the rising popularity of this niche in the market.

The game was developed in the Unity environment, and programmed using C# in the Visual Studio
Code editor (see Implementation chapter). Unity is a beginner-friendly engine for developing 2D or
3D games, mobile apps, and more. Furthermore, it comes with its own proprietary XR Interaction
Toolkit, which aids in the creation of VR applications.

The project was an individual undertaking. All research, design, implementation and testing was
undertaken by a single individual. Though this meant more creative freedom, and less hindrance in
fulfilling the project’s vision, it also meant that the workload at times could seem quite daunting.
Fortunately, project management tools such as Trello, coupled with careful note-taking, alleviated
this burden, and as a result the project never felt too overwhelming.

There were several phases to the project: research, requirements, design, implementation, and
testing.

Before the project could be developed, research into the area of immersive gaming, and in
particular, virtual reality, was undertaken. A summary of these findings can be found in the Research
section.

Requirements were also gathered before work commenced on the project. This involved researching
similar games, their features, and what made them popular. Research into the features deemed
most important in games and VR experiences was also completed during this phase.

During the design phase, sketches and wireframes of gameplay mechanics, user interfaces, and
puzzles were drawn up. Diagrams depicting the “flow” of the game were also created. In addition,
design elements such as font style, colour scheme, and Ul assets were considered at this stage.

Once these concepts were decided upon, the implementation of the game could begin. Over the
course of several fortnightly sprints, features such as environment layout, controls, and interactivity
were continuously added.

Once a sufficiently working version of the game was complete, it went through a testing phase.
Testing was split into two types: functional testing, in which each gameplay mechanic was
scrutinized; and user testing, in which those unfamiliar with the game tested it for themselves. The
functional testing carefully analyzed player input, to test if each mechanic performed its expected
function. The user testing aimed to determine which features were most enjoyable, or if there were

any tasks that were unnecessarily difficult. Once completed, feedback was received from the test
users, as well as suggestions on how to improve the game experience.

Each of the project phases has its own individual chapter, where it is discussed in more detail.

2 Research

Research into the area of design for immersive gaming was undertaken before commencing this
project. It aimed to explore the design factors that create a sense of immersion, both as applied to
the wider world and that of digital games. This research is outlined below.

2.1 Introduction

Immersion is, according to S. B. Schafer (2011), “a process of temporarily expanding consciousness
into areas of the unconscious—something like hypnosis, but retaining consciousness as one does in
lucid dreaming states”.

Elaborating on this notion, humankind has always had a fascination with games. In fact, early
examples of gaming tools, such as dice sets, have been unearthed dating back to three-thousand
years ago (Kumar, Herger, & Dam, 2018). During the last fifty years or so, this fascination has only
become more prevalent with the advent of digital games. But what exactly is it about games that
continues to capture imaginations the world over? More specifically, how have games evolved to
better involve their players, and immerse them in worlds unlike their own? What key concepts can
be utilised to bring memorable experiences to players?

The aim of this chapter is to examine how different elements of design can be employed to provide
immersive and memorable game experiences. To achieve this, key design concepts, and their
psychological/emotional influence, will be examined; first as standalone elements, then as can be
applied to game design. Then, the notion of “aesthetics” — both as applied to the everyday and to
the world of games — will be explored. Finally, innovations in player immersion, current and future,
will be explored.

2.2 Design Concepts

To understand the role of design in crafting memorable and immersive gaming experiences, it is
important to first understand the importance of basic elements such as colour, shape, and sound.
Questionable design choices, after all, can easily make or break a player’s immersion.

2.2.1 Design Concepts in Everyday Life

This section will discuss the broader application of design elements, and the psychology behind
design choices such as colour and shape. Though not specifically tied to the medium, many of these
concepts can indeed be utilised when designing games.

2.2.1.1 Colour

According to the organisation DesignCloud, choosing harmonious colour schemes is one of the
essential pillars of graphic design (DesignCloud, 2019). For example, consider a website with a jarring
colour scheme — it will not attract an audience, and may in fact deter them. Conversely, consider a
website with harmonious colours and a consistent theme. The latter will inevitably attract —and
retain — a larger audience. In fact, according to the organisation Design Wizard, it is estimated that
brand recognition can be increased by up to 80% through careful use of colour in logo design and
marketing (Design Wizard, 2019).

In addition, each and every colour carries a psychological meaning (Design Wizard, 2019). For
example, green is associated with nature, tranquillity, and health, whereas red may be associated

with strong emotions such as anger or desire. In terms of encouraging user engagement, blue is
deemed the most popular colour choice; social media platforms such as Facebook and Twitter utilise
the colour not only for brand recognition, but because it is commonly interpreted as a colour of
friendliness, creativity, and reliability. Furthermore, it is inclusive; it ensures those who are red-
green colour-blind can access the site’s content (Cherry, 2020).

2.2.1.2 Lighting

Lighting can have a powerful psychological effect; exposure to different light sources and colours of
light can induce various emotional states (Rossi, 2020). In her article, Camilla Rossi of the interior
lighting company Karman states that when utilised suitably, lighting can induce in people feelings of
“relaxation, intimacy, clear vision, excitement, and productivity”. However, when used improperly, it
can create a negative response, inducing instead feelings of “stress, sleepiness, melancholy, or
anxiety”.

Furthermore, lighting is a key element to the creation of atmosphere. In his publication, Light Design
and Atmosphere, Tim Edensor puts forward the view that modern use of lighting in cities, such as in
streetlights and advertisements, aid in creating their bustling, lively atmosphere. The popularity of
tourist destinations, such as New York’s Times Square or London’s Piccadilly Circus, proves how such
locations can be “atmospherically charged by illumination” (Edensor, 2015). It is clear that the visitor
experience and immersion would not be the same without this vital element.

2.2.1.3 Shape

Shape has long served as a way for the human mind to organise and categorise the world around it.
Consequently, many different psychological meanings have been assigned to both geometric and
organic shapes over time. Circles, for example, have long been used as representations of the sun
and moon, and, even where they are not, they still “take on some of the psychological and cultural
baggage” of the celestial entities (Fussell, 2020). Other psychological allocations to shapes include
the symbol of squares as stability and dependability, and triangles as dominance.

Organic shapes, on the other hand, feel familiar and comforting, owing to their presence in nature.
As they are irregularly shaped, they may also be used to symbolise creativity and spontaneity
(Fussell, 2020).

It is easy to see how these allocations and their deep-rooted psychological meanings can be used to
provoke the viewer/audience’s emotions. Such a connection could easily be used to immerse a
potential user in an experience.

2.2.1.4 Sound

Sound design is just as crucial as graphics when it comes to providing an immersive experience.
Fiona Thomas of Production Attic states that one might not notice the sound design behind videos
and movies, but that the impact of it is certainly felt. Sound not only adds to the realism of settings,
but also aids in world building, telling stories, and, like the other aforementioned design concepts,
evoking emotion.

Clever sound design can, also, evoke emotions without the aid of accompanying graphics or film.
According to Rev. Dr. Bradley D. Meyer of DesigningSound.org, setting and ambience can help in
setting a scene, eg. a beach with gently rolling waves - one that perhaps reminds listeners of
childhood vacations, or other such fond memories. Evocation of emotion through sound, without
the “crutch” of visuals, can also be linked to empathy; for example, there is evidence that sounds
representative of one’s emotional state, such as crying or screaming, may provoke the same
response as if it were accompanied by visuals (Meyer, 2016).

2.2.2 Design Concepts as Applied to Games

In this section, the application of fundamental design principles to digital games will be reviewed.
Games work to immerse and engage their players not only through the use of the above elements,
but by combining them to create memorable characters and environments.

2.2.2.1 Character Design

Combinations of the previously mentioned design concepts can be utilised to create engaging
character designs. Characters need not be complex for players to find them relatable and/or
aesthetically pleasing; in fact, one needs to look no further than mobile games such as Rovio’s Angry
Birds (2009) to learn how to design simple yet effective characters.

In his UX Design article, Stanislav Stankovic (2021) argues that the characters of Angry Birds offer
important lessons in character design. The familiarity and simplicity of each design relies primarily on
three important fundamentals of design — shape, colour, and emotion. The simple shapes and
colours of the characters not only make them easy to identify, but, from a user experience
perspective, make it evident the purpose for which each was designed. A triangle-shaped bird, for
example, implies piercing ability; a large, heavy bird, destructive power; and a group of small,
identical birds, a clustered attack (Stankovic, 2021). The clarity provided by each desigh means there
is no confusion on the user’s end; such would ruin the player’s experience and sense of immersion.

2.2.2.2 Use of Colour

Colour can be used to denote many things in games — for example, signifying faction or highlighting
the purpose of objects (DVNC Interactive, 2018). However, the main use discussed here will be the
utilization of colour for both world building and emotional effect.

In the article by DVNC Interactive (2018), “Color Theory in Games — An Overview”, it is mentioned
that colour is an essential component to the observable world of a game. In Playdead’s Limbo
(2010), for example, the foreground is rendered in dark, black shades, whereas the non-interactable
background elements are white and grey. Similarly, in Nintendo’s Super Mario Bros. (1985), the
background is a muted blue and largely empty, while interactable foreground elements and the
player character are a warm orange-brown. This not only makes each interactable element
immediately obvious, but also sets the scene and tone of the game.

Colour can also be used to easily differentiate characters, reducing confusion and increasing the
affinity between player and game world. Returning to the Angry Birds example, Stankovic (2021)
states that each character makes use of bright primary colours such as red, blue, yellow, and green.
Not only are these colours eye-catching and easy to remember, they are also highly recognisable,
even to children. In fact, the argument is made that the simplicity of the Angry Birds’ designs mean
that they are easily reproduced on paper, further promoting the brand, and deepening the
emotional connection (Stankovic, 2021).

2.2.2.3 Environment Design
In addition to characters, creating believable, memorable environments is key to immersing players
in a game’s world.

Game worlds, Behnam Mehrafrooz (2020) of the Pixune organisation states, must feel authentic.
Often, he claims, reality can be a solid foundation for building imaginative worlds upon. He goes on
to state that even the art team of the acclaimed Assassin’s Creed I/ (2009) spent time in Florence and
Venice, sketching the environment around them, to then be able to craft a living, realistic game

world based on their findings. This results in an experience that feels “real and authentic” to players,
even if they have never visited these places (Mehrafrooz, 2020).

It is often not enough for game environments to be realistic or “authentic”, however. Mehrafrooz
goes on to state that environmental storytelling — the placement of non-interactable objects in a
game’s environment — piques player’s curiosity and encourages them to further explore the game’s
environment. An example given by Edwin McRae (2017) is that of a bloodstain in the empty
corridors of Alien: Isolation (2014). Nothing happens if the player attempts to interact; it simply
implies that there is danger ahead for the player. Adding such small touches aids in creating a
fantasy world towards which the player develops real emotions (Mehrafrooz, 2020).

2.2.2.4 Sound Design
It is not enough for a game to have detailed visuals to be fully immersive — suitable audio must
accompany game environments and characters if the experience of playing to be truly immersive.

The video game company Pearl Abyss’ Hwiman Ryu (2020) states that games can be enhanced by
“impactful” sound design. Sound, he says, must be fun and exciting; even if realistic sound effects
are your goal, it is often more effective to exaggerate them in some way. If they were exactly the
same as the real world, the player would probably not feel excited about the game at all. More
interesting sounds, however, are more noticeable and, as such, enhance the gameplay experience
(Ryu, 2020).

Dustin Tyler (2021) of GameDesigning.org states that it takes playing a game on mute to realise how
important sound is to the experience. Sound effects and music are there to make the game world, as
well as its stories and characters, come alive. In fact, as well as aiding in immersion, a game’s
soundtrack can evoke feelings of joy and nostalgia in the player, further developing the emotion felt
towards the game (Tyler, 2021).

2.3 Aesthetics

“Aesthetics” refers to the philosophical study and appreciation of beauty and taste (Scruton, 2021).
It is closely interlinked with the study and appreciation of the arts and of artistic value. More
broadly, aesthetic experiences can be defined as having in common four factors: those of focus,
intensity, unity, and coherence (Shelley, 2017).

In video games, aesthetics is defined as “the sensory phenomena that the player encounters in-
game”, as well as the “aspects of digital games that are shared with other art forms” (Ribeiro,
Rogers, Altmeyer, Terkildsen, & Nacke, 2020).

2.3.1 Aesthetics in Everyday Life

In this section, it will be laid out how the concept of aesthetics can be utilised to create atmosphere
and the elicitation of an emotional response, both in games, and in other forms such as the spoken
word.

2.3.1.1 Creating Atmosphere

It is hard to define what the concept of “atmosphere” is, exactly — though, as Greg Kasavin of
Supergiant Games puts it, it can be described as a product of both theme and tone (lyer, 2018). This
can be applied to games, of course, but also, more broadly, to other experiences.

Games and player immersion go hand in hand — but, even before digital games could ever be
conceptualised, people have always been seeking ways to make experiences more atmospheric. In

his article, “A Brief History of Immersion, Centuries Before VR”, P. T. Allen (2018) argues that, to an
extent, even the spoken stories told by our ancestors worked to immerse the listeners in a world not
their own. In fact, creation of mood and atmosphere is a crucial part to the storytelling process, even
today. In written prose, atmosphere can be created through descriptions that evoke all five senses,
thus enabling the reader to vicariously experience what it would be like to be present in the story
(Berve, 2019).

This concept of atmosphere, and the human desire to experience a sense of immersion, also gave
rise to impressive feats of art and design down through the ages. Examples of such include the
impressive stained-glass windows of medieval churches and cathedrals, purpose-made to present
“an immersive sense of otherworldliness” to their onlookers (Allen, 2018). Other examples of
atmospheric experiences include festivals or Christmas markets. Here, crowds gather not only to
purchase goods or attend events, but to simply take in the atmosphere created by the festive
lighting (MK Illumination, 2020).

2.3.1.2 Emotional Design

Emotions are a normal part of everyday life. A reaction of fear, for example, might be felt when
looking over a high banister railing. But again, these can be applied in many ways to enhance the
user experience of an application (Komninos, 2020).

Various companies have already found out that employing an emotional aspect to their products
helps in brand recognition and customer retention. In fact, as web designer Paul Jarvis (2014) states,
“the best commercials sell a feeling or idea more so than an actual product”. But why is this method
so effective? Simply put, it is because such an approach is enjoyable, memorable, and personal. It
engages the user, keeping in their mind the company, product, or service (Jarvis, 2014).

2.3.2 Aesthetics as Applied to Games

In this section, the role of aesthetics in digital game worlds will be explored. The concepts of
atmosphere, emotion, and appeal to players will be discussed, to examine how all can be combined
into a singular captivating experience.

2.3.2.1 Atmosphere in Games

For Greg Kasavin, writer and designer of Supergiant Games’ Bastion (2011), atmosphere is important
in that it constitutes the game’s “unique identity and feel” (Ribeiro et al, 2020). He goes on to state
that atmosphere “creates immersion”, and ensures the game is “aesthetically coherent and creates
the appropriate mood”.

Though games of many different genres can be described as atmospheric, and, consequently, fulfil
their goals of immersing the player in their world, the discussion of such topics always returns to a
prominent example — horror games. It is in these games that, arguably, the creation of the right
atmosphere is most important. For example, in Supermassive Games’ Until Dawn (2015), the player
knows, through their decisions and gameplay actions, that any wrong move could have dire
consequences for the characters. Even leaving theme and setting aside, this works effectively to
keep the player immersed and invested in the story, and evoke a feeling of unease and dread
(James, 2019).

It is important to note that games of similar genre and/or play style can have vastly different
atmospheres. A sci-fi game, for example, can be either humorous and quirky, or dark and gritty
(James, 2019). As different atmospheres appeal to different types of players, it is important that
designers consider exactly what sort of atmosphere they are looking to create, and why (James,
2019).

2.3.2.2 Emotions and Game Appeal

According to Stephane Bura (2008) of GameDeveloper.com, “players don’t play to complete games...
players play to feel emotions.” Game design is not just about the technical aspects — it is “experience
crafting for the purpose of emotion engineering”. Emotions felt are not just a side effect of playing
games — arguably, they are the very reason games are played.

So, if games are about the evocation and engineering of emotion, how does that tie into the
provision of immersive experiences? If we refer once more back to the Angry Birds example,
Stankovic (2021) goes on to say that the emotion and motivation behind the characters is also, aside
from the aforementioned aspects, a key to its success. The title alone is enough to prompt anyone to
wonder, “Why are these birds so angry?” It makes for an interesting opener, one to which the player
must find the answer. Even the emotion behind the characters itself is relatable; everyone has felt
anger sometimes. This level of relatability, therefore, prompts an empathetic response in the player,
further drawing them in to the world of the game.

2.4 Future Innovations in Immersion

In this section, it will be discussed how current innovations in gaming technology — most notably,
that of augmented and virtual reality (AR/VR) — can provide gaming experiences even richer in
immersion than ever before.

2.4.1 Augmented Reality

Augmented reality is the imposition of virtual objects on the real-world environment. Players of
augmented reality games still observe and interact with the real world, but through a device that
enhances their reality by including virtual-only elements, such as a phone screen (Hager, 2017).

A case study for the popularity of AR, and indeed how it can be better utilised to provide immersive
virtual experiences, is that of Niantic’s Pokémon Go, released in 2016. The popularity of Nintendo’s
Pokémon franchise was no doubt reason for its overnight success; but its success did not come from
that of its parent franchise alone. Pokémon Go enables users to locate and catch virtual creatures
based on their device’s location data — however, it was the feature which allowed players to use
their phone’s camera to “see” the monsters in “real life” that made the game so memorable. Though
the app only makes limited use of the AR feature, it was undoubtedly one of its more prominent
selling features (Bannerflow, 2016).

2.4.2 Virtual Reality
Even more immersive than augmented reality is virtual reality (VR).

An augmented reality (AR) application — though there may be virtual elements present — still
requires the player to engage with the real world. Games such as Pokémon Go require that the
player traverse their locality to progress. In virtual reality, however, the player does not see any
trace of the real world at all. Through a headset such as the Oculus Quest or HTC Vive, the user
engages with a completely computer-generated environment, right before their eyes.

The one fundamental element of a VR system is a computer-generated world that surrounds the
participant, and that allows for head tracking (Slater, 2018). This head tracking mimics the natural
human action of moving one’s head to look at one’s surroundings. Thus, it appears that the user
“visits” the environment, rather than “sees” it (Mitterlein, 2018). If this is how players will interact
with games in the future, it is easy to see how they will be able to feel completely immersed in the
game world, as if they belong to it and not ours.

2.5 Conclusion

The concept of immersion has long fascinated humankind. In the world of game design, this is no
different. Constant strides are being made in development of more immersive games, environments,
and technologies.

Games, and indeed, any form of media, cannot be truly immersive without the utilisation of several
important design concepts. Elements such as colour, shape, sound, and lighting can all be combined
to provide the best experience possible for the end user.

In games, where immersion is paramount, this is even more important. Aspects such as character,
careful use of colour, and environment/sound design are also important factors to note in the
creation of engaging experiences.

Games will never stop being immersive. The technology to create even more immersive experiences
is already making its way into the mainstream. The information presented here could be used, as an
example, to create a virtual reality game, in which the player can feel truly included and enveloped.

3 Requirements

3.1 Introduction

In this chapter, the requirements for the application will be explored and discussed. Research for the
application’s development will involve searching for similar existing games, conducting interviews
with prospective players, launching a user survey, and modelling personas based on the results. The
requirements, both functional and non-functional, will then be listed, to get an overview of the most
important features to include.

3.2 Requirements gathering

3.2.1 Similar applications

Three similar applications to the game | intend to develop are I Expect You to Die, Conductor, and
Obduction. Each are VR adventure games that require the player to find clues, solve puzzles, and
escape from a location or situation.

Application 1: | Expect You to Die

Figure 1: Screenshot from "I Expect You to Die". © Schell Games

| Expect You to Die is a Bond-esque secret agent puzzle adventure. The player, as an agent with
telekinetic powers, must try and stop a nefarious weapons and pharmaceuticals corporation.

Advantages of | Expect You to Die:
e Itis humorous and fun to play.
e The gameplay is not too difficult, so is accessible to a wide audience.
e It has an achievements system.
e Puzzles have multiple solutions, so can be solved differently upon replaying.
e Hidden content also increases replay value, as the player may not notice obscure details on
first playthrough.

It can be played from a seated position.
It does not require an internet connection.

Disadvantages of | Expect You to Die:

Puzzles require a lot of trial and error.
The game’s story is quite short.
Retail price is quite high for the amount of content.

Application 2: Conductor

Figure 2: Screenshot from "Conductor". © Overflow

Conductor is a low-poly styled puzzle adventure in which the player must progress through a series
of train stations. They are moved from station to station by steam locomotive, of which they must
take charge and protect from enemy drones.

Advantages of Conductor:

Has several different train stations, each with unique puzzles and objectives.

A train transports you to the next station, which is an interesting mechanic in VR.
Simple, low-poly style graphics make it less demanding on hardware.

It is atmospheric and has a good soundtrack.

Disadvantages of Conductor:

Puzzles are too easy.

The game’s story is quite short.

Has some bugs, which can make the game unnecessarily difficult.

There is no snap-turn ability with the controllers, so the player must always physically turn
around to turn their character.

Has little replay value.

The ending is abrupt and unsatisfying.

Application 3: Obduction

Figure 3: Screenshot from "Obduction". © Cyan

Obduction is a game in which the player finds themselves transported to a strange alien world, which
in places is oddly similar to Earth. They must explore, uncover clues, solve puzzles, and escape back

home.

Advantages of Obduction:

Has detailed, beautiful graphics.

Puzzles contain a lot of attention to detail.
Gameplay is longer than a lot of similar games.
Game’s world is large and well-developed.

Disadvantages of Obduction:

Open environment means the game doesn’t have the claustrophobic nature of most escape
puzzle games.

Game world is very large, and backtracking can be time-consuming.

There are a lot of loading screens, even in the middle of puzzle-solving.

The game doesn’t give you any hints, so may be difficult for some players.

Interactable items are not clearly highlighted.

The ending is unsatisfying.

From the research undertaken, it is hoped that some of the key elements of these games and their
progression can be incorporated into the application. It was also useful to note the negative points
players had about these games, as it was made clear what to try and avoid.

3.2.2 Interviews

To further this research, interviews were conducted with prospective players. The interview
guestions asked first about their experience of games as a whole, then how each felt about VR
games, and if they would play them. The interview transcripts can be found in the Appendix.

3.2.3 Survey

In addition to interviews, a questionnaire was created to explore the features that prospective
players would most like to see in the VR game. Respondents were asked first if they play games, and
if so, what they enjoy the most about them. They were then asked if they have ever used any VR
applications or games, and if so, what they felt were the most important features. Participants who
answered that they had never played a VR game, or used a VR application, were even asked if they
would consider it at some point, and why.

4. If yes, what do you enjoy the most about games? (select top 3 most important features)

Mare Details

@ Gameplay 19 20

@ story 15

@ Graphics 6 14 |
12|
@ characters 15
10|
@ Easeof use 5 8|
@ Feplay value 3 |
4 |
@ Sound design 6) .
@ other 3 0|

From the results, it became clear that the most important aspect of games, for most, is the
gameplay. This was followed closely by story and characters.

7. What features do you think are the most important in a virtual reality app/game? (select top 3

features)

More Details

@ comfort 18

@ Easecfuse 20 20

@ Gameplay]

@ contrals 15 14 |
@ FReplay value 4 2
10|
@ Graphics 6 a |
@ story 2 6 |
a |
@ characters 4 s l l
@ sound design 5 0| -

@ Other 0

When it came to the most important features of a virtual reality (VR) game, the results were slightly
different. This time, the most important features, according to the majority of respondents, were
ease of use and comfort. These were followed closely by gameplay and controls. Surprisingly,
gameplay ranked lower this time round, compared to the earlier question.

This illustrates a key difference between conventional gaming and VR gaming — that of
usability/player comfort. When developing a standard video game, these are undoubtedly still of
importance, but not in quite the same way. As virtual reality games involve the user directly
participating in the game’s environment, and partaking not in the “real” world, but a virtual space,
their comfort while playing is of topmost priority.

In fact, many respondents answered that their least favourite aspect to VR games is that of
disorientation/motion sickness. This was followed by poor controls and poor optimisation of the
game for the target platform.

8. If yes to Question 4, what did you like the least about the VR app/game? (select up to 3
features)

Maore Details

@ 'ade me feel disariented/mo... 7

Controls weren't intuitive 4
@ Graphics were not great 3
@ Game was poorly optimised f... 4
. Game was too short 0

It became clear, from the results of the survey, that the top features to consider for an immersive VR
game were ease of use, comfort, and intuitive controls.

3.3 Requirements modelling

3.3.1 Personas

To further understand the needs and wants of prospective players, two personas were created. One
represents someone who likes to use virtual reality as a tool for escapism, the other is a more typical
“gamer”.

Persona 1

Lili ROIr] ero 30 / NYC / Single / Tech and Games Enthusiast

PERSONALITY MOTIVATIONS
Dedicated Networking
Tech Savvy ;
Convenience
Fun-loving |
Accessibility
GOALS

- discover games that are both fun and
challenging

- use VR as an escape from
everyday life

FRUSTRATIONS
+ poor work/life balance
- inaffordable price of VR equipment

- dissatisfied with many mainstream
games on the market

Persona 2

LeWiS Cohen 25 / Dublin / Single /7 Gamer and Student

PERSONALITY MOTIVATIONS
Smart Study

—
Humorous _—

Creativity
Adventurous _

Enjoyment

GOALS

N - graduate from computing course
-\\:::\
“».# . develop and play new VR
\ ‘»"-‘é experiences
~=3 FRUSTRATIONS
- fast pace of college work

- high cost of rent

- dissatisfied with existing
VR puzzle/adventure games

3.3.2 Functional requirements

1. 6 Degrees of Freedom (6DoF): the player should be able to interact freely with the VR
application, with minimal intrusion. They should be able to move their head, look around,
and freely move their hands to interact with objects in the virtual space.

2. Comfort: the experience should be optimised in such a way that the player feels comfortable
at all times. The experience must limit the likelihood of inducing disorientation/motion
sickness in the player.

3. Ease of Use: the application must be easy for the player to use. There must not be any
confusion as to whether or not objects or Ul features are interactable.

4. Controls: the game must make use of the Oculus Quest 2’s Touch controllers. It must utilise
them in such a way that it feels natural for the player to interact with/grab objects in the VR
world.

5. Low-poly Graphics: the application must be developed using low-poly graphics. This is not
only a stylistic choice, but will reduce the amount of processing overhead and thus enable
the application to run more smoothly.

6. Puzzles: the game should include puzzle elements. The player must search for specific
objects/keys needed to progress, and must not be able to move on to the next area until the
solution is found.

7. User Interface (Ul): the application must include interactable menu screens. The player must
be introduced to the game, be able to configure settings, and reset puzzles if they become
stuck.

8. Lighting: while the overall tone of the game is dark and atmospheric, the game must include
sufficient light that the player can clearly see their surroundings. The aesthetic choice must
not hinder the player’s visibility.

9. Sound: as the game is designed to be an immersive experience, it must make use of sound.
This could be provided in the form of both suitable sound effects and background music.

10. Atmosphere/Immersion: as it takes place in a dark fantasy/gothic reminiscent setting, the
game must evoke a tense, moody atmosphere. This should work to immerse the player in
the environment, and provide a sense of urgency as they venture to escape the level.

3.3.3 Non-functional requirements

e Application must run at a minimum of 72 frames per second. Though this is not an essential
requirement, it is the standard for all games/applications uploaded onto the Oculus store.

e Application must be an Android build (.apk). Though it can be built as a Windows executable
(.exe) and run from a computer, it will not work correctly when loaded onto the headset.

e Application must be built specifically for the Quest 2 headset. While there are many VR
headsets available, the Quest 2 is both the most affordable/accessible, and the only one
available for development both within the college and at home.

e Application must be user-friendly. When in a virtual reality environment, it is easy for a
player to get disorientated and/or motion sick. This can be mitigated through the inclusion
of configurable settings, controller-enabled snap turning (as opposed to continuous joystick
movement), and a gentle fade in/out of graphics when scenes are loaded or changed.

3.3.4 Use Case Diagrams

To consider the game flow, and actions the user should be able to take in-game, a Use Case Diagram
had to be designed.

Virtual Reality Game Flow

____________________ Options Menu
o eeemamee <cincludes> =

<<include>>

¢ p— Continue Game
. <<include>>
. <<extend>>

<<include>>

<<extend>> ______
""""""" 5 Exit to Main Menu

Actor
(Player)

Figure 4: Diagram showing the processes undertaken by the player (actor) as they play the game.

The above diagram displays each scene/option the user progresses through as they play the game.
From the main menu, they can select from the following buttons: Play Game, Options, Credits, or
Quit Game. When they play the game, and hit the pause button, a pause menu shows up, containing
the following: Continue Game, Options, or Exit to Main Menu.

3.4 Feasibility

It is intended for the application to be developed within the Unity game development engine, and
targeted especially towards the Oculus Quest 2 headset. This will be feasible as there is access to
these headsets both within the college and in a home environment. However, it may be necessary to
develop the application primarily in the college lab, as the hardware would be better suited for the
complex rendering of VR applications during development.

3.5 Conclusion

Various research methods were utilised to determine a both a prospective audience for AbyssScape,
and to find out what such players would prioritise in a virtual reality game. As a result of this
research, certain aspects of the game, such as ease of use and comfort level, were prioritised.

Analysis of existing games was carried out, and important features, such as aesthetic design and
gameplay elements, were noted as reference points.

Interviews, surveys, and personas provided an even stronger idea of who would be most interested
in playing AbyssScape. They also further illustrated the need for a suitable comfort level and ease of

gameplay, compared to non-VR games. It was discovered that there were among the highest
priorities for players of VR games, compared to those of gameplay and story when questioned about
traditional games.

4 Design

4.1 Introduction

AbyssScape was developed using the Unity game development engine, and programmed using the
C# language within Visual Studio Code. This chapter details the design process behind the game, and
includes a basic overview of the applications used in the process. Fundamental design factors, such
as user interface design, font choice, colour schemes, user navigation, and game flow are all outlined
below.

In the Program Design section, the technologies used to implement the game mechanics will be
described, as well as a basic explanation of how they work. In the User Interface Design section, the
design of the game, including layout, colour schemes and user interface elements, will be discussed.
Similar examples will be referenced to convey how these were used during development to
influence the design choices of AbyssScape.

4.2 Program Design
In this section, the applications used to develop the game will be outlined. Relevant examples of the
interface of each will also be provided.

4.2.1 Technologies

4.2.1.1 Unity Engine

The application was developed using the Unity game development engine, and programmed using
the C# language. Specifically, version 2020.3.25f1 was used. Versions 2020.1 and up are LTS (Long
Term Support) releases of Unity. This means that they continue to be officially supported by the
Unity creators and can easily be patched if bugs are found.

Unity is a very beginner-friendly game development engine. It is free to download and use, though a
premium model is also offered. It provides a graphical interface and uses C# code natively, though
Java, C/C++ and Lua scripting can also be used. Though Unity can also be used for 2D game
development, it is tailor-made for 3D development. 3D game development can be carried out easily
and intuitively through the provision of a “scene view” window. In this “scene view”, 3D assets can
easily be created and placed within a three-dimensional game world, and adjusted as needed. This
graphical interface also makes it easier for users to see the changes made to their code in real-time,
or track errors as they arise.

Figure 5: Unity main interface.

There exists an in-built programming feature in Unity called Visual Scripting, in which the user can
click and drag gameplay functions/behaviours to create games without writing any code. This makes
it even more accessible to those new to game development. However, this was not utilised during
the development of this project; all scripting was written inside of Visual Studio Code.

Unity also supports a wide range of operating systems and hardware. It can be used to develop
games or applications for Windows, MacQS, and Linux, as well as mobile platforms such as iOS and
Android. It also supports development for VR platforms such as Oculus Quest, HTC Vive and Steam
VR.

4.2.1.2 Visual Studio Code and C# (C-sharp)

Though other code editors are compatible with Unity, the one chosen for this project was
Microsoft’s Visual Studio Code. Visual Studio Code is a more simplified, streamlined version of
Microsoft’s Visual Studio, which makes it easy to focus purely on writing code. It is also extremely
customisable and extensions can be added to aid the user in various areas, such as line auto-
completion or formatting.

All scripts were written in C#, as it is natively supported by Unity and can be easily integrated into
Unity projects. C# is an object-oriented language derived from C, and is quite similar in terms of
syntax to C++. It is a high-level language, meaning it is developer-friendly and simple to debug and
maintain, compared to low-level languages such as Assembly code. High-level languages, such as C#,
can also be run on any platform, whereas low-level languages are entirely machine-oriented.

) File Edit Selection View Go Run Terminal Help

EXPLORER

* OPEN EDITORS

X € Clock.cs Assets\ Course Librar...
~ ABYSSSCAPE - FINAL PROJECT VR ESCA...

v Assets
~ _Course Library

> _Prefabs

€t Clockes X

Assets » _Course Library > Scripts > € Clock.cs

1

using System.Collections;

Clock.cs - AbyssScape - Final Project VR Escape Room - Visual Studio Code

using System.Collections.Generic;

using System;
using UnityEngine;

- public class Clock :
> Font: .

ot public secondHand = null;
» s public minuteHand = null;
> Models public hourHand = null;
> Particles
“ Scripts

> Acticns void Update

> Conditions

3 Controls UpdateTime();

~ Testing

C¢ DisplayFPS.cs - - .

[HE5 private void UpdateTime
€ Notes.cs -
now = DateTime.Now;

C¢ TeleportAnchorWithFade.cs nd (now) ;

C TeleportAreaWithFade.cs UpdateMinute (now);
€+ Clock.cs UpdateHour (now) ;
> Textures
> Video

Licenses.txt

private void UpdateSecond now

> _TerrainAutoUpgrade R
6.0f * now.Second, 9, @);

2 Y, 3

secondHand. localRotation = Quaternion.tuler(newSecondRotation

> Adaptive Performance newSecondRotation =

> AnimX Animals

> asoliddev - Low Poly Dynamic S...

> AurynsSky

private void UpdateMinute now

newMinuteRotation = 6.0f * now.Minute, @, @);
minuteHand.localRotation = Quaternion.Euler(newMinuteRotation);

blue-crystals

BrokenVector
Default Input Actions
dragon-plush
private void UpdateHour now
newHourRotation = .0f * now.Hour, 9, 0);
¥

6
hourHand.localRotation = Quaternion.Euler(newHourRotation);

DungecnAssetPack
FREE_Cartoon_Halloween_Pack
HalloweenPumpkins

iPely3D

> Low Pely Graveyard
> OUTLINE

Figure 6: An example of the Visual Studio Code workspace.

4.2.1.3 Unreal Engine

Another game engine which could have been used is Unreal Engine. This is used across many triple-A
game companies as it can be used to create very graphically impressive games. However, it would
require a lot of independent learning to use. Due to the project’s time constraints, it was simply not
wise to spend extra time learning a new engine. Unreal Engine also relies more so on C++ than C#;
again, this would have required the learning of a completely new language, which would be
impractical given the time required to complete the project.

4.2.2 Structure of Unity

4.2.2.1 Controls

n Hand Tool — this is used to move around the game world. The shortcut key for this is Q.
H Move Tool —this is used to move game objects. The shortcut key for this is W.

¢h
Rotate Tool — this is used to rotate game objects around their X, Y, or Z axes. The shortcut key
for this is E.

Scale Tool — this is used to change the scale of game objects. The shortcut key for this is R.

E Rect Tool — this is used to change the length/width of objects such as menu elements
(buttons, panels, etc.). The shortcut key for thisis T.

4.2.2.2 Hierarchy and Inspector

The Hierarchy panel (left) contains assets currently in the scene. From here, they can be deleted,
have their order rearranged, and be selected to view in the Inspector (right). The Inspector shows
the properties of the selected game object, such as name, tags, layer, position, and size. These
values can then be changed in the Inspector.

Figure 7: Unity's hierarchy can be seen to the left of the game scene panel. The Inspector is shown on the right.

4.2.2.3 Assets Folder

The Assets folder is the main project folder. It contains all the materials needed to create a game in
Unity, such as scenes, models, prefabs, textures, materials, and scripts. These can also be arranged
into separate subfolders if the user so wishes; this is not necessary, though it does make the location
and selection of assets more streamlined. When an asset pack is imported from the Unity Asset
Store, a new folder is created inside the project, containing the new assets.

Assets

Library _TerrainAutoUp nimX Animals) Default Input A sh FREE_Cartoon_ Hallor

iPaly 30 Lov . Ma sA [ckiLite Partic...

Figure 8: Example view of an Assets folder.

4.2.2.3.1 Scenes Folder

This folder contains all the scenes required in the build of the game. When it comes time for the
game to be built, these scenes must be added to the build settings window to be used in the final
product.

Scenes

Figure 9: Scenes folder.

4.2.2.3.2 Prefabs Folder

This is the folder in which prefabricated objects (prefabs) can be stored. Prefabs are instances of
objects that have preconfigured properties. When the developer wants to use a certain object again,
they can simply create a prefab of the object, so its properties are retained. This creates an exact
copy of the object. This is useful if the object needs to be used several times in the same scene, as it
cuts down on the amount of time spent configuring each new instance in the Inspector.

Own > Prefabs

> * °> -

Input Action M., XR Interaction ...

Figure 10: Prefabs folder.

4.2.2.3.3 Scripts Folder
This folder contains all the C# scripts required to run the game. These scripts must be added to the
relevant objects as a component in the Inspector window if they are to have any effect on the game.

Scripts

MainMenuCont... Pa

Figure 11: Scripts folder.

4.2.2.3.4 Materials Folder

This is the folder in which materials can be stored. Materials are textures which have been added to
objects in the scene. When a 2D texture is added to a 3D object, a material is automatically created.
Thus, it is fair to say that a material is a 3D version of that texture; it “wraps” around the mesh of a
3D object.

Own > Materials

Figure 12: Materials folder.

4.2.3 Design Patterns

The world of the game was put together using a modular low-poly dungeon asset pack from the
Unity Asset Store. Modular 3D assets are models that can be seamlessly placed together to create
coherent level designs quickly and easily.

In the case of this game, tiles such as floors, walls, and doorways were placed in such a way that
rooms could be formed. Over time these combined to form even more detailed structures. Once the
overall structure of a room was complete, objects such as light sources and furniture could then be
added. Modified versions of the downloaded assets could then be placed in the appropriate prefabs
folder should they need to be used again.

Figure 13: Room used in the Main Menu scene, showing how each wall, floor and ceiling tile can be placed together to form
modular interiors.

4.2.4 Process design

Run Game

v

Main Menu

v

Play Game Options S— Quit Game

] | Stops Game |
(Loads Game | Pause Menu Y
\ J N .

h 4

Resume —@t to Main Menu
/ \ ¥ ¥ b i
-'I'J ‘.‘\u
(Capture Player Input [ﬂsmi
N\ '
b i
I k4 h 4 h 4
. Snap Turn On/Off Sound On/Off SEEL LI
y b game)
i/ LY
[PressESCKHey ——
5\ '
A -
e p o e y . / .\\\
{ Enables/Disables I-" Enables/Disables | Resets Current Room!
\ Snap Turn Feature / Sound X to Defaulis

- 4 b d b >

Figure 14: Main processes performed in the application.

4.3 Userinterface design

This section deals with the process behind the design of the game’s user interface (Ul). It also
discusses design choices, such as fonts and colour palettes, and details why the final choices were
made.

431 Wireframe

To conceptualise the main screens shown in the game, simple wireframes were drawn up. First, a
main menu was drafted, showing the choices of Play, Options, and Quit. This main menu was
envisioned as a menu “floating” above a 3D environment, similar to the game’s level design, rather
than a static screen. A menu panel present in a 3D world was thought to provide a better sense of
immersion.

A sample view of how the game would look in first-person VR view was also drafted. The player’s
hands are visible to them at all times. With them, they can grab objects or perform other
interactions such as opening doors.

Y\M Mo C(qu)\’
= Hoo 2D b wﬂ;«eg& bkg

|
rAge
)

Mo kos D oS
,_R% Gore

ﬂogbmlp
~ Culx Gome

A

=

T

Figure 15: Wireframe showing a simple Main Menu and first-person view of the game.

4.3.2 Style Guide

Before any Ul or menus could be designed/implemented, it was important to find an appropriate
font and colour scheme for the game. The process behind this selection is shown below.

4.3.2.1 Fonts

For the purposes of this project, various medieval, gothic-style fonts were downloaded from the
website dafont.com. These were then compared against each other; their strengths and weaknesses
being evaluated before the final design was chosen.

Font 1: Dragon, by Vunira Design (dafont.com)

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG.
A BYS$S SCAPE

This font looks adequately fantastical and old-fashioned — both aspects the game sought to
encapsulate. However, the font does not contain a matching set of numerals. It was not yet clear
whether these would be needed; however, it was not chosen on account of this. It was also
imagined that the decorative caps could cause readability issues among players.

Font 2: Standrag, by Taufiqgurrohman Nadri (dafont.com)

The quick brown fox jumps over the lazy dog. 1434567890

fbyss Scape

This font is reminiscent of the Gothic blackletter of old. For a game that takes place in a medieval
fantasy dungeon, it certainly would not look out of place. However, it was felt that it lacked the
“punch” that a game title and Ul would need to grab the user’s attention. There was also the issue
that players might find the font hard to read.

Font 3: Traditian, by HansCo (dafont.com)

:_]Tilf QUICK, BROWN FOX JUMPS OVER THE LAZY DOG. 1234567890

ABYSSSAPE

Though this font might have worked, it was decided against as, like the above example, it might have
proven difficult for players to read. The fine strokes, coupled with the decorative accents, mean each
letter looks different to a more “standard” typeface. By default, it is also a very small typeface; the
size needs to be increased greatly for it to be easily read. Added to this was the fact that the
numerals are all represented by narrow characters, which makes them hard to read when placed
alongside each other.

Font 4: Elementary Gothic Bookhand, by Bill Roach (dafont.com)

The quick brown fox jumps over the lazy dog. 1234967£90

AhyssScape

This was the font that was decided on in the end. It is nicely decorative and fits with the theme, but
at the same time, is legible enough so as to be understood by players. It was also used for a previous
VR project, where it lent itself nicely to the theme — a dark, fantastical room, not too dissimilar to
this game.

4.3.2.2 Colour Scheme

AB763E
CeC7C4
380D17
575E75

FEDF6D

[+)]
& &
[+]
8 3
~ <

abyss2

%

Figure 16: Colour palettes generated for use in Ul features.

The website coolors.com was used to generate a colour palette for the user interface and menus of
the application. The first palette was randomly chosen based on what would complement the tone
of the game — mainly neutral, earthy colours. The second palette, however, was generated using
colours directly from a screenshot of a scene. Colours such as that of the dark walls, the glowing
torches, and the ominous orange sky were all selected.

Some of these colours did get used in the form of lighting and ambient features; however, a
premade Ul pack was downloaded for use in menus which did not contain most of these colours (see
Ul Design below for more detail).

4.3.2.3 Ul Design

A prototype of the different menus encountered by the player was designed. First was the main
menu, which lets the player choose between playing the game, configuring options, or quitting the
application. A diagram of the main menu, and the options screen accessible from it, can be seen
below.

Figure 17: Main Menu and Options Screen processes.

When the player presses the pause button, the pause menu appears. From this, they can configure
options, restart the game, or quit to the main menu. However, this was designed differently to the
main menu screen. It was decided, in keeping with the game’s provision of an experience as
immersive as possible, that the game’s pause menu should be implemented in the form of diegetic
Ul. Diegetic Ul is a form of user interface in which the interactable elements are presented as part of
the game’s environment or characters, rather than an on-screen overlay — examples being the
hologram inventory of Dead Space’s Isaac Clark, or the handheld map of Far Cry 2 (W, 2018). This
form of Ul lets players perform the same actions as a standard interface, but with the added bonus
of feeling completely immersed in the game world.

Q\gx&(Y(eé% Fouze Qe Mo, U

Buldeot, o cadsallec: agpoocs . the €orm o€ an
Cport book, Wid%m

p%er.

Figure 18: Diagram showing the process of pausing the game.

A package was downloaded from the Unity Asset Store to help with the Ul creation and layout. It
was felt that having pre-generated assets would speed up the tedious process of laying out Ul
elements from scratch. Thus, a Ul set that both stylistically and thematically fit the game was
purchased for the project.

Slmple Iron UI Set Pack

Figure 19: The asset pack utilised for Ul features, such as the Main Menu.

Due to time constraints, however, the pause menu was ultimately left out of the final product.
Though it would undoubtedly be a good quality-of-life addition to the game, it was not felt that
excluding it would negatively impact the game’s core gameplay or performance.

4.3.3 Storyboard

Storyboarding is a vital part of the design process for any game. Developing further upon the ideas
presented in the prototypes and wireframes, a storyboard was drawn out. This storyboard showed,
in more detail, how the player would progress through the game, and which obstacles they would
face along the way. It also showed what would happen when a certain action was performed, eg.
when the pause button was pressed.

pescd: -
(LawL w@
‘ Mo Pents -
r - V) »bik(a;&(\okes up belwvd

~ Lepk aownd &F sucawdivgs,
2 | N| N o oo, Vo o £scape

_ ? 2 T O,\a\z, Yo wl.eede
. C@{Liﬁdoo(by s ks M
] CJM ko OQ(&]O W %‘Q O&ﬁld@:
AT e aaploce e ot

~ e, oo,
deex vdco@c@r&@

~Cocadoc %u'\deﬁ \:lcuccr ko
Reom 2

=\
.
e
\

f@{j

Figure 20: Simple storyboard detailing the player's first task.

The above storyboard details the main points of the first room encountered by the player. It shows
them waking up behind bars, being able to escape their prison (with the help of some items found in

their cell) and, finally, being able to leave the room into the corridor beyond. From here, they must
progress to the next room.

The process involved in escaping this room is shown in the below storyboard.

Leot R Pocess

_As coom Mas A i€
@QWAWQ Me vexk deex

~7\ o equred to (ocake
ko Yo ecernd/ diskack
e wole.

—Ahece, ¥ o kkcher acea
WA Wae. TOOM. .

~Cond uda 05 meak
Cont e, uged to ?ﬁm

ksl of e wole

~ e o€ bones s also
— (%> gl ((Qo;&% e
— |- To gel ¢ '
e Oy QL&Q@KGQCM hcoos o bote

% G (he WO Yo cekda.

~Ahis ooMes the. glanec

r@ C kommmv\mw@‘& HZ\\m
M%Wded doox

Figure 21: Storyboard detailing the player's second task.

4.3.4 Level Design

To get a loose idea of how the dungeon, with all its rooms, would be structured, a dungeon
generator tool, available on the website https://donjon.bin.sh/5e/, was utilised. Though this site and

its various tools are commonly used to generate ideas for the popular role-playing game, Dungeons
& Dragons (Wizards of the Coast, 1993), it was felt that it would prove a useful resource when laying
out the world of this game.

Figure 22: Dungeon map as a visual aid for the building of the game.

https://donjon.bin.sh/5e/

Unlike the above diagram, the final game was not intended to have seven rooms. Each would be
quite large in and of itself, with a variety of tasks to complete to progress. The game was envisioned
to only contain two to three rooms at maximum, with smaller corridors between. However, the
room order, corridor placement, and overall layout of the generated example gave a good indicator
as to how the player would navigate through the final game. It made the progression of the game
much easier to visualise before refinements could be made.

A simple layout of each room could then be sketched out based on the above diagram.

Reort 4 Lawouk Gongly)

il M
PO = = -
Dot WS-
c\:kﬁd] 3 o
=) o
Lt <) L O
nexe -
uéﬁ, ey
'(’6 e&g:cfz%(: %6(6 i
(M e — w {eex
— Ta
WGt
Qoo 2 Lonowl Gowgh)
\/\\Dco;m
Qile o« o(hen Y et bl Da"
bones %
\Jz%m%
Mo bone, o
WAK, dskock ik .0’7 0«_
e
0 T %0%% mokg
Oecx” 35—
.

Figure 23: Bird's-eye view of two main rooms encountered by the player.

435 Environment

To envision the overall look and feel of the game environment, a mood board of ideas was created in
Photoshop (photos taken from unsplash.com).

Figure 24: Mood board created to aid the game's visual development.

These images helped to envision the game environment as a tangible, extant place, rather than a
fictional creation. The places in the photos also provided a great reference for how each part of the
dungeon could be designed to look unique, with each room different to the last.

Though the final game levels had not yet been designed, a simple test scene was then created in
Unity, both to create a simple prototype level, and to test the VR controls. Part of this sample scene
can be seen below.

Figure 25: First sample room created.

Low-poly dungeon assets were imported from the Unity Asset Store and Sketchfab (sketchfab.com),
and loosely placed together to get an idea of how each room could be built. It was also a useful
exercise to see how lighting, skyboxes, and props could be used to set an appropriate tone for the
game.

Later in the game’s development, more puzzles/activities for the player to complete were drawn up.
It was felt that the initial obstacles felt too rudimentary and might bore a more experienced player.
The creative process, and ideas behind these new challenges, can be seen below.

ecend Room. Pzl / Ackiibies

¥ o L0

0 o O eoen
Ofevle |5
0 O |

SRS

% \d
(lrest oo

Chest I g
howe]
o Fan?]

HENERBENE

—_— —1

/ wi¢
B Obex
D Yo Ginal
L0
& X
l %Kaw% N ol e cagie e
9 o m M\AM oxeds
ﬁﬁ] I
P MJ :‘
%ﬁmm? o > Wil 5@‘0‘”"% ® wie
OK] this iaeds
et
coulkd UM .
/7&%@(wiE's i
conld
—-—* K&S wilodke ?

»
Figure 26: Continuous iteration on game's processes led to new challenges being designed for the player.

As can be seen above, the room was designed to include an extra set of challenges. It was no longer
the player’s goal to simply find a way around the guarding wolf, but they first had to figure out how
to access the area which would allow them to do so.

This design was then iterated upon. Instead of having an extra object to find and use — a process
already familiar to the player — it was decided that there should be another form of puzzle present in

the room. The ideas for this are shown below.

- e
VO 0d

de-0ckno0ked Goc

<A
s o

een, ond use

U

ey B [
e /et = =
& guzle (f ks ! [l
o lo con@lex] -

(\OK&C GOd needs ko be

goer 'O
Ve

od b diskacl W€

LD

QW@MWMM%%@&M%. .
Q) e puzde D) Aake-d zde C) Pige puzde
- | ol
W ‘ F_\ o9 %,0 0 ,Hj:iﬁ
= e |0]al|0]%]V o
AR &
§—\—’\§\§§ | Olala ¥ |¢|O|
=0 (O o0 P | E{ ::'
|| oxpxa o)
[J& bowes 7004 Foge conbe | [Tiges oce cSnked
fhece. & O Cheoc swiped um/(eﬁ/ o hak e dadte
¥ @ o desiroked| | cght o W od ed oices
Q'jwk ¢ O‘@LM?‘W mcomggcz,
malthing MRS | e allow
| \okex @%W

Figure 27: Further examples of new puzzles that could be presented to the player.

None of these puzzle concepts were implemented in the final product. However, the concept of
solving a puzzle to access the next part of the room remained in place, with the chosen puzzle
instead taking the form of a riddles quiz (see Implementation chapter).

4.4 Conclusion
There were a lot of important design aspects to take into consideration when designing the main

components of AbyssScape. This chapter has discussed the design processes involved, including:
e The programs used to design and code the game
e How the player would navigate through the game
e Design ideation, and iteration
e Appropriate styling of elements such as fonts, colour scheme, and Ul

e Storyboarding, level design, environment design, and puzzle ideation.

5 Implementation

5.1 Introduction

The application developed for this project is a virtual reality escape room game called AbyssScape,
developed inside Unity 2020.3.25 and coded using C#. It also utilises Unity’s inbuilt XR Interaction
Toolkit. Unity is a game development engine that allows for the design, creation, and programming
of many types of game, 2D or 3D. The programming language C# (C Sharp) is commonly used
alongside Unity for programming of in-game assets; however other languages, such as Java or Lua,
may also be used. The XR Interaction Toolkit enables the implementation of many VR features, such
as the mapping of controls to specific XR controllers, or interaction with objects.

5.2 SCRUM Methodology

Sprint
Retrospective

Sprint
Review

Increment

Sprint
Planning

Product Sprint
Backlog Backlog

7 Scrym Tea™

Scrum Framework © 2020 Scrum.org

Figure 28: SCRUM methodology (source: https://www.scrum.org/resources/what-is-scrum)
The SCRUM methodology was used for the implementation phase of this project.

SCRUM is an agile development methodology, commonly used in software development. It works by
first breaking down products into tasks, which are placed on a list and are then taken from the list in
the order they are to be done. These tasks can then be handed to teams to work on within set
timeframes known as “sprints”.

The implementation phase for this project consisted of 8 sprints in total. These all took place in the
second semester. Each sprint took place over a period of 2 weeks.

The requirements for the application were listed in a product backlog. Each item on the product
backlog was broken down into a series of tasks which formed a sprint.

5.3 Development environment
The visual development of the game took place inside the Unity editor, specifically version
2020.3.25f, whereas all the code was written inside the Visual Studio Code environment.

file Edt Assets GameObject Component Tools Window Help

B -~ XRorigin

p Turn Action
Right Hand Snap Turn Action

Add Component

Figure 29: Unity interface.

’6 File Edit Selection View Go Run Terminal Help MainMenuCentroller.cs - AbyssScape - Final Project VR Escape Room - Visual studio Code

EXPLORER € MainMenuControllercs X

~~ OPEN EDITORS

X € MainMenuController.cs...
~ ABYsSSCAPE-F.. [B U & System.Collections;
System.Collections.Generic;
UnityEngine;

UnityEngine.UT;
UnityEngine.SceneManagement;
€ DisableParticlesOnGrab.cs using UnityEngine.XR;

~ Prefabs Bones) Textures
> Scenes
~ Scripts

€ MainMenuController.cs

€ OptionsMenuController.cs public MainMenuController :

€ PauseMenuController.cs .
public playBtn;

public optionsBtn;
public quitBtn;

A Lighting.lighting
Wolf Test.controller
Polygonal Particles
PolyQuest EvilVillage public void PlayGame(string sceneMame
Polytope Studie SceneManager.loa
RPGPP_LT

Samples

Simple Iron Ul Set Pack public void Quit
SimpleSky Application.Quit();

ene("Room 1");

Game

SkySerie Freebie
Stones_and_buried_treasure
StylizedHandPaintedDunge... B
TextMesh Pro

TinyFire VFX

Unvik_3D

XR

XR Device Simulator

XRI

B N Y N N VRV

~

Logs

~

Packages

~

UserSettings
AbyssScape - Final Project V...

Z

Assembly-CSharp-Editor.cspr..

Z

Assembly-CSharp.csproj
Interim Test Build.apk

& Unity.Postprecessing.Editor.c...
& Unity.Postprocessing.Runtim...

> OUTLINE
Figure 30: Visual Studio Code interface.

Though GitHub is a useful tool in software development, it was not utilised throughout this project —
firstly, because this was an individual project, and there was no need for external collaboration;

secondly, because GitHub is not optimised for large files. Often, Unity projects, especially those
containing 3D assets, can grow to quite a large file size, and GitHub has a limit of 100MB without the
use of external tools, such as Git LFS (Large File Storage). It is also worth noting that work on this
project was completed mainly from home, rendering the use of file-sharing and/or version control
tools unnecessary.

54 Sprintl

During Sprint 1, designing and coding were not paramount. Instead, the focus remained solely on
research and requirements gathering. During this phase, project management tools, such as Trello,
were also set up. More on these can be found under the Project Management section.

5.4.1 Research
The first item on the agenda was to conduct research on the chosen project area.

Virtual reality is a new and exciting, but also extensive, area. However, the concept of immersion in
relation to games is nothing new. In fact, the very concept of immersion itself is as old as oral
storytelling traditions.

A literature review on the sources curated and gathered for this research was carried out. This
review explored the history of immersion, how it can apply to games, and how immersion can only
continue to evolve with the advent of AR and VR.

More information on this can be found under the Research section.

5.4.2 Requirements Gathering

After the topic was researched, the next step was to find out what would be required to build an
immersive VR game.

The first step was to find similar games/applications to that envisioned of AbyssScape. Games with a
similar objective — solve puzzles and/or overcome obstacles to progress and escape — were
researched. Three similar games were:

e | Expect You to Die
e Conductor
e Obduction

The mechanics, gameplay style, and even graphical style of each was examined to see what made
them appealing to players.

More information can be found under the Requirements section.

5.4.3 Creating a Sample VR Room

To examine how the game would be built, and to test the components of the Unity XR toolkit, a very
basic sample scene was built inside Unity. This room was built using assets downloaded from the
Unity Asset Store. A modular low-poly dungeon pack was downloaded and imported into the

project. Assets from this package were utilised to put together a basic room that comprised of walls,
halls, and doorways, as well as light sources such as torches. After testing out different skyboxes,
one was chosen that was deemed suitable for the ominous, foreboding atmosphere the game
intended to evoke.

Figure 31: Basic room concept inside Unity.

An XR Rig was also added to the centre of the room, and configured as necessary. This was tested
with the Oculus Quest 2 headset, and was found to work as required.

5.4.4 Revisiting Previous Tutorials & Examples

To refresh the knowledge and understanding of the elements required to develop AbyssScape,
previous Unity VR tutorials were revisited. Also revisited were previous VR examples, such as the
interactive virtual room created for a previous assignment.

5.5 Sprint2
During this sprint, further research was conducted. In addition, basic visualisations of gameplay and
a user interface were drawn up and iterated upon.

5.5.1 Conducting Further Research

In addition to examining similar games, a survey was launched. This sought to obtain a clearer
understanding of what players felt is the most important aspect of games. Respondents were also
asked which aspects they found to be most important in virtual reality games, and if there were any
aspects they disliked about virtual reality. Basic interviews were then conducted to reinforce the
information collected.

Once results came in, a clearer picture of the important aspects to games, and in particular VR
games, began to emerge. From this information, personas could then be created. Like the survey
and interviews, these personas reinforced which aspects to prioritise during the game’s
development.

5.5.2 Beginnings of Design Phase

Before a start could be made on creating the game, the look and feel of the game, as well as the
various screens encountered by the player, had to designed.

A layout concept and mood board were created to aid in the design process (see Design chapter).

Beyond the conceptualisation phase, designs for the various game screens were drawn up. The first
of these was a main menu Ul, as well as a basic overview of how the game would look in first-person
VR view (see Design chapter).

5.6 Sprint3

During this sprint, important design elements, such as storyboarding gameplay processes, level
designs, and Ul concepts, were finalised. A Main Menu system was also started on, though it would
not be functionally programmed until later.

5.6.1 Level Design

It was conceptualised that there would be about two to three rooms in total in the dungeon. Thus,
two basic rooms were designed as a starting point. These top-down views helped visualise which
items to place in each room, what challenges the player would face, and how they would progress to
the next room (see Design chapter).

5.6.2 Storyboarding

Before any of these gameplay features could be implemented, however, it was important to think
about the flow of the game and its processes. Processes crucial to the core gameplay (such as
locating objects, navigating obstacles) were drawn up in a storyboard format. These helped visualise
how each process could be designed and coded (see Design chapter for more detail).

5.6.3 Main Menu Ul

As the basic Ul had already been designed, a Main Menu scene was created. A Ul pack, stylised to
resemble iron, was purchased from the Asset Store, and the buttons, frames, and panels contained
within were used to lay out a series of menus.

1 ABYSSOCAPE

"Emvram*

Figure 32: The Main Menu.

In addition to this main menu, three other screens were implemented. These were the Options
screen; the Help screen, accessible from the Options menu, which explains the game’s controls; and,
finally, an introductory screen, toggled when the player presses the “Play” button. This introductory
screen provides some backstory to the player’s situation, and why they must escape the dungeon in
the first place.

YoU HAVE BEEN IMPRISONED IN
THE DUNGEON OF THE CASTLE OF
THE DEEP ABY55, WRONGTULLY
CONVICTED OF A HEINOUS (RIME.
Now, You FACE No CHOICE BUT TO

Figure 34: Options menu.

OcuLus QUEST 2 CONTROLS
TogGLE RAys - A or X BUTTON

Figure 35: Help screen, explaining the game's controls.

Though the Main Menu itself had not yet been coded, each screen was toggled visible or invisible by
the GameObject.SetActive() function inside Unity. When the player selected the Options button
from the Main Menu, for example, the Main Menu would be rendered inactive, and the Options
screen would become active. Conversely, if the checkmark or X button on the Options screen was
selected by the player, the Options screen would be set to inactive, and the Main Menu would be set
to active once more.

On Click 1)

Editor And Runtime~ GameObject.SetActive

®Options Menu @ | v

Editor And Runtime > GameObject.SetActive

® Main Menu @

Figure 36: When the player selects Options, the Options menu becomes active and the Main Menu becomes inactive.

5.7 Sprint4
The Main Menu, now laid out in full, had to be programmed for each button to perform its expected
function. This sprint would also see construction beginning on the first room in the game.

5.7.1 Programming the Menu Functions & Repairing the XR Origin

To program each function of the main menu, a script called MainMenuController was created. This
script contained functions for playing and quitting the game. (A function for calling up the Options
menu was not needed, as this could be toggled in the Unity editor itself.)

C MainMenuController.cs X

Assets » Own > Scripts > € MainMenuController.cs > ...
1 usin
|_-'__',i'-

System;

System.Collections;
System.Collections.Generic;
UnityEngine;
UnityEngine.UT;

U

U

usin
usin
I_-'__',i_

usin nityEngine.SceneManagement;

m oM /m m m 0m 0

usin nityEngine.XR;

public class MainMenuController : MonoBehaviour

references

public Button playBtn;

i)
m

ences

public Button optionsBtn;

ences

m

public Button quitBtn;

Terences

public void PlayGame(string sceneName

SceneManager.lLoadScene("Room 1");

erences

i)

public void QuitGame
Application.Quit();

Figure 37: The MainMenuController script, containing the functions required to load the game and to quit the game.

However, a roadblock occurred in the form of the Unity XR Rig not performing as required. The ray
selectors, attached to the player’s hands, could not be used to select any of these buttons. This was
due to the inbuilt XR Toolkit needing to be updated. In the updated package, the XR Rig component
was replaced instead with a component named “XR Origin”. Though there looked to be no difference
between the two, it was considered wise to remake the XR Rig from the ground up, by using this
new XR Origin instead.

% XR Origin Scenes | §9 XR Origin

Figure 38: The XR Origin setup, with a Camera, Left Hand & Ray, and Right Hand & Ray.

This new XR Origin was created by first importing a premade Unity XR Origin object. This XR Origin
contains a nested Camera Offset object, within which is the main camera that functions as the
“eyes” of the player. With this set up, the position of both the left and right hand objects was copied
from the original XR Rig, and new hand objects were added to the Camera Offset with these co-
ordinates. New XR “ray” interactors were also added to these hands, again with the same properties
as the previous ones.

Once the hands were created, Unity’s XR Input controls had to be mapped to them. This would
ensure that all the VR functionality of the Oculus Touch controllers could be utilised.
n v XR Controller (Action-based)
Update And Before Render

Input Tracking "
Position Action

Input Action

Input

Enable In

s

i:XRI LeftHand

ftHand/UI P

Input Action

Figure 39: The XR Controller component, as shown on the Left Hand object.

The new XR Origin was then tested with the menu functionality. Thankfully, this time, it worked as
planned. The rays, when toggled on by the player, were able to select each button. When Play was
pressed, the scene transitioned to the game scene; when Options was pressed, the Options menu

appeared; when Credits was selected, the Credits screen appeared; and when these screens were

exited from, the Main Menu screen appeared once more.

The scripting of the options available was not completed until later; for now, other in-game features,
such as building the game environment and implementation of obstacles, took precedence.

In addition, a short, looping piece of music was created inside MusicMaker for the Main Menu
scene. MusicMaker is a program that enables the user to arrange premade music loops and, in doing
so, to create film scores, soundtracks, songs, and more.

Once a suitable piece of music was composed, it was placed in the scene.

5.7.2 Building the Game Environment

Construction of the in-game level was also started at this point. Using a modular low-poly dungeon
asset pack, walls, ceilings, and doors were placed together to create a singular, large room.
Appropriate light sources, such as chandeliers and candles, were placed at several locations to
prevent the room from appearing too dark. It was also at this point that various methods of lighting
were tested. When developing for Android platforms, such as the Oculus Quest 2, setting light
sources to Unity’s “Mixed” or “Baked” settings is optimal, as it reduces the processing needed to
render complex lighting. Consequently, all of the lights in the scene were set to “Mixed” mode, and
the scene lighting was then generated through the baking of lightmaps.

Furniture items, such as a table and shelves, were also placed around the room to make it feel more
authentic. In addition to this, the interactable objects required for the player to progress were
placed in the relevant locations. Examples of these were a long plank of wood, with which the player
could reach a key to unlock their cell, and a crystal ball that, when placed on its stand, would reveal
a secret room behind an inconspicuous wall. It was ensured that each of these items contained a
collider component, as well as Unity’s “XR Grab Interactable” component. This is a script that comes
with Unity’s XR Interaction Toolkit. It enables the player to pick up items while playing in VR.

Figure 40: Long plank of wood inside cell. Scene lighting has been turned off for demonstration.

Figure 41: Crystal ball stand.

E?- ~ XR Grab Interactable

B XR Interaction Mana ger
Default

Colliders

Element 0 HE W, " Collider)

tom Reticle MNone (Game Object)

ct Mode

Movement Type EETERETE

Figure 42: A snippet of Unity's inbuilt XR Grab Interactable component. This was placed on each interactable item and
configured individually as required.

As the room remained quite dimly lit, however, it was imagined that these objects would not be too
easy to find. To remedy this, a subtle particle effect was placed in the vicinity of each interactable
object. This ensured that each object would be easier to locate, whilst not to be so obvious as to
make the game too easy.

Figure 43: Interactable key. Again, scene lighting has been turned off for clarity.

Several static props were also placed around the room, to give the impression of a living, believable
environment. These included a table, stools, crates, and shelves.

Figure 44: Sample shot of the first room, containing various props.

This in-game environment was constantly iterated upon and expanded throughout the game’s
development. Items were added, or removed, as was deemed fit.

5.7.3 Testing the Wolf Puzzle

It was estimated that, as it was a complex and animated 3D asset, the wolf set to guard the second
door would take time to implement programmatically. Thus, it was critical to explore the asset’s
possibilities at this early stage, rather than later.

To see which animations would be needed, as well as the conditions required to transition between
each, a test scene was created. This simple scene included only the wolf asset, a target for the wolf’s
Al programming, and a flat plane.

Figure 45: Wolf test scene.

To act as an Al agent, a Unity game object needs to contain a Nav Mesh Agent component. This is a
component that can be used, for example, to create enemy Al that will advance on the player, or
another target. In this case, the wolf was to be the agent; the bone, its target. A Nav Mesh Agent
component was added to the wolf, as well as a Rigidbody component and relevant colliders.

< Nav Mesh Agent

nt Type Humanoid

Auto Braking

acle Avoidance

Path Finding

Figure 46: Unity's Nav Mesh Agent component, as it appears on the wolf.

nematic

Interpolate

Continuous Dynamic

reeze Rotation

Figure 47: Unity's Rigidbody component, as it appears on the wolf.

These components also needed to be accessed through scripting if they were to function according
to the desired behaviours.

void Start

anim = GetComponent<Animator>();

rb = GetComponent<Rigidbody>();
agent = GetComponent<MavMeshAgent>();
agent.GetComponent<MavMeshAgent>() .enabled = true;
audio = GetComponent<AudioSource:
audio.enabled = true;

.]

target = GameObject.FindGameObjectWithTag("AI Target™).transform;

When the game starts, each component is accessed through the C# “GetComponent” method, seen
above. The target for the wolf, a variable created earlier on in the script, was also set. Through the
use of the “FindGameObjectWithTag” method, the script configures any game object with the tag
“Al Target” as an object the wolf will move towards.

An animator controller was set up containing the three necessary animations — an idle animation,
movement, and eating. In addition, transitions were created between each of these states,
containing conditions that could be triggered through code.

Any State

Entry

C_Run

Figure 48: The animator controller used to configure the wolf's actions.

a'H

Three conditions, called “isldle”, “isMoving” and “isEating”, were created, respectively. By default,
the condition “isldle” would be set to “true”, meaning that, by default, the wolf’s idle animation
would play. However, if a certain condition was met — such as an object being placed within range —
this state would be set to “false”. In its stead, the state “isMoving” would be set to “true”. Finally, if
within a certain distance of its intended target (in this case, the rib bone), the wolf’s “isEating”
condition would be met, rendering “isEating” to “true” and all other states to “false”.

This logic can be demonstrated more clearly through the code below.
void Update
float dist = Vector3.Distance(target.position, transform.position);

if(dist <= lookRadius && dist <= 1.5
audio.Stop(
FaceTarget();
agent.Stop(
anim.SetBool("isEating”, true);
anim.SetBool("isMoving", false);
anim.SetBool "isIdle™, false ;

else if (dist »= 1.5 && dist <= lookRadius
audio.Stop
FaceTarget();
agent.SetDestination target.position ;
anim.SetBool("isMoving™, true);
anim.SetBool "isIdle”, false ;
anim.SetBool("isEating", false);
else

agent.GetComponent<NavMeshAgent> | .SetDestination agent.transform.position ;
audio.Pl ;
anim.SetBool("isIdle™, true);
anim.SetBool "isMoving™, false);
anim.SetBool("isEating", false);

Figure 49: Code snippet of the "Al Wolf" script, showing the logic behind the wolf's actions.

First, a “lookRadius” had to be established. This is a spherical range in which the wolf would be able
to “see” objects placed within; outside of which, the objects would have no effect on its behaviour.

public float lookRadius;

This variable was declared as “public” so it could be configured from within the Unity editor, for ease
of testing.

B v AlWolf (Script)

Agent +Wolf (Mav Mesh Agent)

Look Radius 7

Figure 50: The "AIWolf" component, showing both the Al Agent and the Look Radius as editable fields.

In the Update function, which executes every frame, a floating point value for distance between the
target and the wolf’s position is declared. Then, if the distance was to be less than, or equal to, the
length of the “lookRadius”, as well as less than or equal to the stopping distance of the wolf’s Nav
Mesh Agent component, the relevant boolean values would be triggered. Else, if the distance
between wolf and target was to be greater than or equal to the stopping distance, the distance was
still less than or equal to the “lookRadius”, and the wolf was not eating, a new destination would be
set, and “isMoving” would once again be set to true — the wolf would advance towards the new
target. If the wolf was not moving, and not eating, then the Nav Mesh Agent would cease moving
forward, and the wolf would once again resume its idle animation.

5.8 Sprint5

During this sprint, the in-game environment was expanded, the “socket” functionality of features
such as locks was implemented, and a solution to the problem of the player’s XR Origin not
transferring into the game scene was found. Furthermore, the options available to configure in the
Options screen of the main menu were finally scripted.

5.8.1 Expanding the Game Environment

At this stage, the construction of the game environment was almost complete. New sections of the
game world, such as the secret room and the second puzzle room, were completed. Once they were
built, relevant props and interactable objects were placed within.

Figure 51: Secret room, triggered by placement of the crystal ball. The amphora stand contains socket interactors (see 5.8.2
below).

Figure 52: Important features of second room: kitchen area and guarding wolf.

New interactable items were also added as the world continued to expand. These included:

e Three gems, of different colours, which could be picked up and placed inside an amphora
stand (see Figure 51) to trigger the removal of crystals blocking the doorway

e Food items, such as meat and bones, which could be used to lure the wolf

e A desk containing a puzzle (see 5.9.2).

Figure 53: Crystals blocking doorway. The coloured gems around the room match these in colour to give the player a hint.

Figure 54: Food items for wolf. Scene lighting has been turned off.

Now that each item was in place, scripting of the important functions of the game, such as sockets
and the Al wolf, could commence.

5.8.2 Implementation of Socket Functionality

One of the components of Unity’s XR Interaction Toolkit is the “XR Socket Interactor” component.
Like the XR Grab Interactable component, this is a script that ensures that an object can be placed in
a precise location, for example on hooks or shelves. Often this “socket” is an empty game object,
containing only a trigger collider and the Socket Interactor component. The object to be placed is
given its own layer, and the socket interacts solely with this layer to achieve the desired result.

XR sockets were placed in the following locations:

o At the end of the wooden plank in the player’s cell, to interact with the key outside

e Onthe cell door’s lock, to interact with the key and consequently, open the door

e On the crystal ball stand, to ensure the crystal ball could be placed precisely on the stand
e The three holes of the amphora stand, in which the coloured gems could be placed.

Figure 55: Lock socket (collider shown in green).

Figure 56: Socket for key attachment (green sphere collider). The player can use this to "hook" the key from the shelf
outside.

Figure 57: Crystal ball stand, with socket (green).

Figure 58: Stand for gems, with a socket for each (green).

Originally, the plan for the crystal ball socket interactor, as well as the amphora stand interactor, was
that they would trigger an animation to play. These animations took the form of the relevant object
sliding downwards to eventually disappear from view. However, during testing, the animations
would not play, even as the right object was placed within the socket. A temporary fix for this was to
simply set the moving objects to inactive upon the relevant socket interaction. It was decided that,
as this was proven to work, the animations would be revisited later.

The animations were not utilised in the end, as it was felt that setting the game objects to inactive
fulfilled the same purpose. In addition, objects that move at runtime must not be marked as “Static”
in the Unity inspector window. While non-static objects are able to move, they are not affected by
baked global illumination. This was of little importance to certain moveable objects, such as the
doors; but it had the effect of making the moveable wall look different to the surrounding walls,
rather than blending into the environment. It was felt that this made it look far too obvious and gave
a jarring effect. Therefore, it was marked as “Static” so that it could be affected by the global
illumination.

Figure 59: Static checkbox in the Unity inspector.

5.8.3 Animating the Cell Door
The door to the player’s cell needed to be animated if it was to swing open and free the player.

In Unity, animations are controlled by a component known as the Animator Controller. Like in the
wolf example (see Figure 48), an animator controller is an animation, or series of animations, which
can be controlled using different sets of conditions. Animations (known as “states”) can be dragged
and dropped into these animator controllers, and either be triggered automatically, or only when
certain conditions are met.

In the case of the door, the animation was to play automatically.

An animation was created, in which the rotation of the door was increased every frame, to give the
illusion of it swinging outwards. Though the animation itself was not controlled by any conditions or
triggers inside the animator, the Animator component was disabled so that the animation would not
begin at the start of the game. Instead, the component was to be set to active once the key object
was placed in the lock by the player. An audio source was also added to the door, once again set to
play only when the key unlocked it.

Animator

itroller

Mormal

Culling Mode Cull Update Transforms
Figure 60: Door's Animator component. Notice how it is set as inactive.

Select Entered (SelectEnterEventAr
Editor And Runtime =+ Animatorenabled

asement_Door LI® +

Editor And Runtime + PlayQuickSound.Play

B Basement_Door_ Li &

Figure 61: Animator, and audio source, are enabled when key interacts with the lock socket.

5.8.4 Transferring XR Origin to Game Scene

To ensure continuity between the main menu and the game scene, the player’s XR Origin had to be
transferred smoothly between both.

One of the most common ways of achieving this through Unity scripting is through a method called
DontDestroyOnLoad(). Normally, when a new scene is loaded, each object present in the previous is
destroyed. However, with this method, objects can be loaded between scenes if so desired.

~ System.Collections;
System.Collections.Generic;
UnityEngine;

~ public DontDestroyPlayer : MonoBehaviour

public GameObject obj;
w private void

obj;

The above code shows the script created for this purpose, DontDestroyPlayer. The variable denoting
the object to be kept between scenes is declared as “obj”, and set to public so it can be selected
directly inside the Unity inspector. On Awake() — before anything is updated — the program is
instructed not to destroy the object set in the inspector. In this case, the player’s XR Origin was set
to this value.

The XR Origin did indeed transfer between scenes — but with one small problem. When an object is
transferred to another scene using the DontDestroyOnLoad() method, it is instantiated at the origin
point (0,0,0). However, this point was not intended to be the spawn location. In the case of
AbyssScape, instantiating the player at this point caused them to spawn in the middle of the room,
rather than inside the cell as intended.

To combat this problem, it was first attempted to place the player at the correct starting position
through code. A script called PlaceAtPosition was implemented.

public PlaceAtPosition : MonoBehaviour

private GameObject SpawnPosition;

public static PlaceAtPosition instancedPlayer;
private Scene scene;

void

if (instancedPlayer == null D

instancedPlayer = H
instancedPlayer ;
void
SpawnPosition = GameObject. H
B
public void

instancedPlayer, SpawnPosition.transform.position, SpawnPosition.transform.rotation);

This script set out to achieve the following:

e Declare variables for the player’'s SpawnPosition, the instanced player, and the current scene

e On Awake(), check to see if there is an instance of the player already in the current scene; if
not, instantiate the player in the scene

e Find the GameObject tagged as “SpawnPoint”, and allocate this value to the variable of
SpawnPosition

e Call the SpawnObjectAtPos() method

e In the SpawnObjectAtPos() method, instantiate the instanced player, at the position and
rotation of the SpawnPosition object.

However, this script did not perform as expected. No matter how many adjustments were made to
this script, the player would continue to spawn at the origin point.

Though scripting a solution was seen as a more professional way to rectify this, a simple fix was
implemented instead. This fix involved moving everything in the scene upwards along the Z-axis,
consequently shifting the player’s spawn location at (0,0,0) to the desired location within the cell.

A
-

Figure 62: Player's SpawnPosition.

It was undoubtedly not the most technical method of solving the problem, but as the project had a
strict timeframe, it was a viable solution.

5.8.5 Coding the Options Functionality
Now that the main menu had been put together, it was time to code the options functionality.

In a previous VR example, the options configurable by the player were the ability to toggle the “snap
turn” feature on or off, as well as the option to mute/unmute the background music. Those same
functionalities were replicated here. To control these functionalities, two similar scripts,
ChangeSpritelmage and ToggleMusic, were written, and attached to the Snap Turn button and Music
button, respectively.

using System;

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.UI;

using UnityEngine.XR;

0 references

public class ChangeSpriteImage : MonoBehaviour

0 references

public Sprite buttonSprite;

1 reference

public Sprite newButtonSprite;
1 reference

public Button button;

0 references
public void changeButtonImage()
button.image.sprite = newButtonSprite;

The above script, ChangeSpritelmage, was utilised to change the image of the button’s sprite when
the button was pressed by the player. In addition to changing the image of the sprite, the XR Snap
Turn Provider component attached to the XR Origin would be toggled off. This functionality,
however, was configured through the Unity editor; it was simply the sprite image of the button that
was targeted through the above code.

On Click ()

Editor And Runtime * PlayQuickSound.Play

Editor And Runtime * ChangeSpritelmage.changeButtonlmage
B SnapTum Buttor @

Figure 63: The Snap Turn button's functionality, as seen inside the Unity inspector.

The script used to control the Music button — ToggleMusic — was written similarly. This script also
targeted the ambient music present in the scene, allowing the player to turn it off, or back on again.

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.UI;

using UnityEngine.XR;

using UnityEngine.Audio;

0 references
public class ToggleMusic : MonoBehaviour

) references

public Audiolistener Listener;

private Sprite onlmage;
referance

public Sprite offImage;

3 references

public Button button;

2 references

public AudicSource bgMusic;
3 references

private bool isOn = true;

0 references

void Start
onImage = button.image.sprite;

0 references

public void ButtonPressed

if (isOn
button.image.sprite = offImage;
is0On = false;
bgMusic.mute = true;

else

button.image.sprite = onImage;
isOn = true;
bgMusic.mute = false;

In this script, the “on” image — the image shown when the music is playing — is set as a private
variable. This is because it does not have to be set in the Unity inspector, as it already has the same
value as the starting sprite. The variables of “offimage”, “button”, and “bgMusic” could all be set
from within the Unity inspector, while a Boolean value of “isOn” was created and declared as true by
default.

At the start of the program, the “onlmage” is set to the image of the sprite used in the button. Then,
a public method called ButtonPressed() is constructed. Within this method is an if-else statement,
which controls the music in the following way:

e First, if “isOn” equals true (which it does by default), the sprite image of the button is
changed to the “offimage”.

e The value of “isOn” is set to false, and the background music is muted.

e [f “isOn” equals false, ie. the music is not playing, the button sprite is changed back to that of
the “onlmage”, “isOn” is set to true once more, and the background music is unmuted.

A “Help” button, which, when pressed, would detail the control scheme of the game, was also
included in the Options menu. However, it was felt that the Main Menu itself was a better location
for this button, and so it was moved there instead.

When this button was pressed by the player, it would take them to a Help screen. Here, they would
be able to read the controls used by the game.

)
< ABYSSOCAPE

Q

Figure 64: Main Menu, showing the Play, Options, Help and Quit buttons.

OcuLus QUEST 2 CONTROLS
TogGLE RAYS - A 0r X BUTTON
SELECT OPTION - LEFT/RIGHT SELECT

Figure 65: Help screen.

5.9 Sprint6

The construction of the game scene entered its final stages. Throughout this sprint, remaining
features, such as scripting of objects and extra puzzles/challenges for the player, were prioritised.
The remaining doors were also configured to be openable, and a collider was placed on the player.

5.9.1 Implementation of Riddles Quiz

As simply locating and placing objects was deemed insufficiently challenging, a new puzzle was to be
implemented.

This puzzle was to be activated by placing a book, hidden somewhere in the room, upon a lectern.
This lectern contained a socket that, when the book was correctly placed within, would activate a
puzzle for the player to complete before proceeding further.

Figure 66: Desk on which the book was to be placed.

The original idea for the puzzle was that of a match-3 game, in which the player would have to swipe
tiles left, right, downwards, or upwards, to match it with at least two of the same kind. To try this
idea, it was first brought into a test scene (below).

Figure 67: The match-3 test scene.

However, this idea was abandoned when it became clear that it would be too difficult to implement
in VR. Games of the match-3 genre are commonly found on mobile platforms, as they are more
suited to swipe controls. Implementation in VR, if it were to work, would feel unsatisfying in
comparison. The mechanics of such a puzzle were also complex, involving many mathematical
concepts such as trigonometry. Consequently, a different type of puzzle had to be implemented.

In keeping with the game’s fantastical, medieval atmosphere, it was decided that, instead of the
match-3 puzzle, a quiz in which the player must correctly answer three riddles was to be
implemented. Not only was this more fitting, but it was also simpler logistically.

Upon activation of the book socket, a screen would appear to the player, prompting them to begin
answering the riddles. When the player pressed the “Start” button, they would be taken to the first
question. If answered wrongly, they would be taken back to the starting screen, where they could
try again until giving the correct answer. Upon answering a riddle correctly, however, the screen
would change to show the next one, and so on until all three were answered.

T0 DISPEL THE EVIL MAGIC BEFORE
Yﬂl/ You MLB'T COIZEECTLY AWNEE

Figure 68: The Start screen for the riddles puzzle.

Figure 69: Example of a riddle on the Riddles canvas.

The riddles were set up using an empty game object, simply called “RiddleGameManager”. This
object had a script attached called RiddleGameManager, which controlled which riddles were to be
displayed to the player, as well as whether or not the player would proceed.

In addition, scripts called Questions and Answer were written. The Questions script contained the
information needed by the RiddleGameManager to access each question, each set of answers, and
each question’s correct answer; whereas the Answer script was used to detect whether or not a
guestion was answered correctly.

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.XR;

System.Serializable
1 reference
public class Questions

1 reference

public string question;
1 reference

public string[] answers;
1 reference

public int correctlnswer;

n

Above is the Questions class, containing the public variables “question”, “answers”, and
“correctAnswer”. This Questions class is marked as “Serializable”. In simple terms, this means that its

properties can be configured from directly within the Unity editor, eliminating the need to navigate

back and forth between script and editor.

| have towns without people,
Question
Answers
Element 0
Element
Element 2

Element 3

Correct Answer
What has a golden head and
Question
Answers
Element O
Element
Eler

Element 3

Correct Answer
The more you take, the more
Question
Answers
Eler
Element
Element 2

Elemen

Figure 70: The questions and answers as they appear in the editor, as accessed from the RiddleGameManager.

The Answer class:

2
9

forests without trees, and rivers without water

I have towns without people, forests without tr

lime
A Map
A Mountain

lhe Sky

2

a golden tail but no body?

What has a golden head and a golden tail butno |

A
4

A Worm
A Dragon
A Coin

Nothing

you leave behind.

I'he more you take, the more you leave behind

IT
m
T

public RiddleGameManager riddleManager;

public wvoid answer
if (isCorrect
Debug.lLog("Correct Answer!"™);
riddleManager.Correct|
else
Debug.lLog("Wrong Answer!™);
riddleManager. IncorrectAnswer| | ;

This class contains a boolean value for “isCorrect”, which is set to “false” by default. It also accesses
the RiddleGameManager’s Correct() and IncorrectAnswer() methods, to track whether the player
has answered correctly or not, and to change the result accordingly. In the answer() method
(lowercase to avoid conflict with class name), what takes place is thus:

e [f the player selects the correct answer, output “Correct Answer!” to the Unity console and
execute the RiddleGameManager’s Correct() method.

e If the player answers incorrectly, output the message “Wrong Answer!” to the Unity console,
and execute the RiddleGameManager’s IncorrectAnswer() method.

These methods can be seen below.

public void Correct
score += 1;
qgs.RemoveAt currentQuestion;

+a0)

GenerateQuestion();

public void IncorrectAnswer
Debug.Log("You answered incorrectly. You will not proceed.");
e(false);

startScreen.SetActive (true);
book.transform.position = Vector3(-1.5869

riddleCanvas.SetActiv

In the Correct() method, the score is incremented by one point (though a scoring system was never
implemented in the end), the current question is removed, and the next question is generated,

through the GenerateQuestion() method (see below). If the IncorrectAnswer() method is called, then
the canvas on which the riddle is displayed is set to inactive, and the start screen shows once more.
(It was also originally intended that the book on the desk would revert to its previous position, but
this was never tested as it was deemed unimportant.)

Should the player answer a riddle correctly, it would be replaced with a new one from the array.

vold

if (gs.Count > @
currentQuestion = Random. @, gs.Count;

guestionText.text = gs currentQuestion .question;

else
Debug.

If the number of riddles answered was greater than zero, a random item out of the array would be
presented on the canvas, and the relevant answers would be set. However, if the player reached the
end, the GameOver() method would be called.

public wvoid

magicFields | @]. false);
magicFields|1]. false);
riddleCanvas. false);

At the end of the riddles challenge, both the magic fields (see below) and the canvas displaying the
riddles would be set to inactive, leaving the player free to proceed.

To justify this puzzle’s necessity, magic fields were placed around the kitchen-like area of the room.
These had the effect of preventing the player from distracting the wolf before completing the puzzle
contained within the desk. Each magic field comprised of an elongated cube object with the Mesh
Renderer component toggled off, but the collider on. This in turn had the effect of creating an
invisible forcefield around the kitchen area. A particle effect was applied as a child of these objects,
to make it look magical, but also threatening.

Figure 71: Magic fields.

When all the riddles were answered correctly, the magic fields would dissipate, leaving the kitchen
area open to the player.

This leads on to the next exercise: that of implementing the wolf’s Al movements.

Figure 72: Wolf guarding door.

This process was carried out similarly to that of the test scene. However, this time there was one
problem.

In the test scene, the target for the wolf to move towards was a static object. This time, though, it
was to be an object picked up by the player. Setting the look radius large enough to include the food
items was not an option, as this would cause the unwanted behaviour of the wolf automatically
detecting them. The challenge here, consequently, was that of only increasing the wolf’s look radius
when the player selected the food object.

To achieve this effect, the AIWolf script was modified to include a new function, called
setLookRadius(), that accepted the float value parameter of “rad”. If the wolf’s look radius was
greater than or equal to zero, this “rad” value would be set as the new look radius.

public void setlLockRadius(float rad

it (lookRadius »>= 0
rad = lookRadius;

This value could then be set inside the Unity editor, when the relevant food object was picked up by
the player.

Select Entered

Runtime Only

B Wolf (Al Wolf)

Figure 73: When the food object is selected, set the wolf's look radius to 10.

When tested in the editor, this produced the same effect as the test scene — however, problems
were faced in the build (see chapter 6 for more details).

5.9.2 Configuration of Doors
For the user to proceed through the dungeon, the doors to each section had to be openable.

In Unity, there are several ways to achieve this. One of the most common ways to create
interactable doors is to assign them a Hinge Joint component. Unity hinge joints work similarly to
real ones —they are used to simulate the swinging open, or closed, of a door. Limits can also be set,
to ensure that the door only opens a certain amount.

However, when hinge joints were tested with the doors of the dungeon, several problems were
faced. The most common of these was the doors behaving erratically whenever a hinge joint was
added. Fixes for this behaviour include increasing the mass of the doors’ Rigidbody component, as
well as the mass scale of the hinge joint itself.

These fixes, however, failed to produce results. Due to the strict timeframe of the project, a
workaround was used instead, in the form of animations.

Like in the cell door example (see 5.8.3), an Animator component was placed on each door, and an
animation was created that incremented the door’s Y-axis rotation every frame. Again, this
animation was only set to play once a certain condition had been fulfilled, such as correct placement
of an object, or fetching a food item for the wolf.

The very last door was set up slightly differently. This one, instead of opening when a certain action
was fulfilled, contained a large trigger collider that, when entered by the player’s collider (see 5.9.3
below), would trigger it to open. Outside this door was another trigger collider, which, when entered
by the player, would cause the scene to change to the Victory Screen (see 5.10.2).

e

Figure 74: The last door's Box Collider.

5.9.3 Adding a Collider to the Player

As it is not a requirement for most VR developments, the player’s XR Origin did not originally contain
a collider. However, for the player to trigger interactions, such as opening the very last door or
transitioning to the last scene, a Collider component was added. This took the form of a narrow
capsule collider, primitively resembling a humanoid shape.

Figure 75: The player's Capsule Collider.

Now that the player had a “body”, they were able to activate triggers by stepping inside them.

5.9.4 Modifying the Plank/Key Interaction

Though they were some of the first tasks to be encountered by the player in-game, the plank and
key interaction had not yet been tested.

Implementing the socket functionality for the wood to “hook” the key was not as simple as it initially
seemed. With the other sockets, the object to be placed within was grabbed directly by the player.
However, the socket on the wood plank required the key to snap to its position without first being
picked up by the player.

Two approaches to this were considered.

The first was to attach a Fixed Joint component to both plank and key. A Unity fixed joint is a
component that “sticks” two objects together. A script was implemented that would get the
Rigidbody of both objects at runtime, thus “sticking” them to each other.

void Start

joint = obj.GetComponent<FixedJoint>();
connectedObject = GameObject.FindGameObjecthithTag("Key");

public void Attach
rb = connectedObject.GetComponent<Rigidbody>();
joint.connectedBody = rb;

However, like the Hinge Joint component, this produced erratic results. The key did not snap to the
wood’s position; instead, whenever the plank was released from the player’s hand, it would snap
back into its original position.

The second approach was to simply increase the size of the key’s Box Collider component, as well as
that on the end of the plank. This would enable the player to knock the key off the shelf it rested on,
and then push it along the floor to the cell.

Though it was not as user-friendly an approach as the former, it was considered the best option for
the time.

5.10 Sprint 7

At this stage, a test build was considered for user testing. To ensure the app would run smoothly on
build, optimisation of the game also commenced. This involved removal of superfluous objects and
compression of lighting and textures. A Victory Screen was also implemented, which appeared when
the player exited the final door of the dungeon.

5.10.1 Optimising the Game

It is important that, during Android or VR development inside Unity, certain features, such as
textures or lighting, are compressed to reduce processing overhead.

Firstly, texturing of models used was compressed to a smaller size.

v Override For Android

Max Size

Figure 76: Most textures were compressed to 512 or 1024.

Then, lighting was considered. Though only baked and mixed lighting were used, which are already
optimised for Android builds, there were further changes that could be made to ensure a smooth
performance. Max lightmap size was set to 512, and the maximum number of lights rendered at any
time in view was set to five, out of a possible eight.

Additional Lights PerPixel

Per Object Limit

Figure 77: Only five additional lights can be rendered before they are culled from view.

Once textures and lighting were reduced in size, it was decided that superfluous props should be
removed from the scene. Though certain props were retained for the creation of an atmospheric
environment, those not likely to be seen by the player were deleted.

5.10.2 Implementing a Victory Screen

For completion of the game’s objective to feel fulfilling to the player, a Victory Screen had to be
designed and implemented.

As mentioned under 5.9.2, the trigger collider necessary to transition to a victory screen after exiting
the last door was already in place. The only part remaining was to build the scene environment, as
well as a Ul display prompting the player to either play again, or quit the game.

It was also decided that this scene should have brighter, more hopeful lighting settings, in contrast
to the infernal oranges and reds of the dungeon environs.

Figure 78: The background environment of the Victory Screen.

Figure 79: The Victory Screen UlI.

5.10.3 Creating a Test Build
To conduct user testing, an alpha build of the game was made.

This process was not without its problems, however. Early builds made of the project had only
resulted in the Quest headset crashing, preventing the application from loading. After some
research, however, the root of the problem was found.

When building for Oculus devices, it is required to set the minimum target API to APl Level 32. By
default, Unity sets this API level value to “Android 6.0 ‘Marshmallow’”. This was swiftly fixed.

Minimum API Leve APllevel 32

APRllevel 32

Figure 80: API levels in build settings.

5.10.4 Functional and User Testing

Once the build problems were fixed, both functional and user testing were carried out (see chapter
6).

5.11 Sprint 8

Throughout this sprint, final optimisations and minor fixes were the priority. All of the important
mechanics had been included at this stage of the project; all that remained was to ensure it was as
functional as possible.

5.11.1 Colliders

There were multiple colliders in the scene which, as they were not convex in nature, the player could
pass through unabated. If left alone, this risked many features, such as the cell bars, becoming
redundant.

To remedy this, the mesh colliders of these objects were marked as convex. These colliders were
present on both the cell bars and the magic forcefields.

Figure 81: Convex collider on the cell bars and door (green).

Figure 82: Convex colliders on magic fields.

5.11.2 Rotation of Attach Points

A frequent problem faced when implementing the XR Socket functionality is that of correct
orientation. When an object is placed within its relevant socket, it is not always facing in the right
direction. This is caused by the 3D model’s pivot point and its native orientation.

A solution to this is to rotate the designated “AttachPoint” of the socket to the correct orientation,
so that the object, when placed, will be positioned in the correct way.

Figure 83: The movement toggles on the Attach Point for the book on the desk. The Z-axis is pointing outwards, so this is
how the book will face.

Consequently, the “AttachPoint” of both the desk and lock sockets were rotated in the correct way.

5.11.3 Further Optimisations

Before a final build was made, further optimisations were undertaken. This involved ensuring all
non-moving objects were marked as “Static”, ensuring those that moved at runtime were not
marked as “Static”, and removing unnecessary physics components from objects that did not require
them, eg. the animated doors. Objects that were previously interactable, but with which the user
was not required to interact to progress, were also made static.

5.12 Conclusion

This chapter outlined the tasks performed during each fortnightly sprint, and the processes involved
to bring the game’s most important features to completion. There was a lot of work carried out over
each sprint; but, nonetheless, a lot of knowledge was gained in the process. While the finished
product still had potential for improvement, the features implemented most successfully were:

e The building of an atmospheric game environment

e Design and implementation of a main menu system

e Testing and implementation of wolf Al

e Transferring of player XR Origin from one scene to another
o Implementation of socket functionality

e Implementation of Riddles puzzle
e Configuration of triggers to open doors and move between scenes
e Configuration and optimisation of appropriate lighting.

6 Testing

6.1 Introduction

This chapter discusses the tests that were undertaken for AbyssScape. There were two types of
tests: Functional Testing and User Testing. Functional Testing was undertaken to determine what
worked, and what did not work, in the game; while User Testing was undertaken to determine the
ease of use, and what the user can do in the game.

6.2 Functional Testing

The main goal of functional testing is to examine how functional the core game mechanics are, and
to identify whether or not they respond correctly to user inputs. The functional testing for
AbyssScape was divided into three parts:

menus and user interface
movement and controls
in-game activities.

A technique known as “black box” testing is commonly used for such an undertaking; however, as
this was an individual project, this approach was not taken.

6.2.1 Menu/User Interface

Test | Description of test case Input Expected Actual Comment

No Output Output

1 View the Help menu. Press the | The Help The Help Responsive,
Help menu opens | menu showed
button. and displays opened and | correct input.

the controls. | displayed
the controls.

2 Return to the Main Menu. Press the | The Help The Help Responsive,
OK screen closes | screen showed
button. and the Main | closed, and correct input.

Menu is again | the Main
shown. Menu was
again shown.

3 View the Options menu. Press the | The Options The Options | Responsive,
Options menu menu showed
button. displays the displayed correct input.

toggles for the toggles
the snap-turn | for the snap-
and music turn and
functions. music
functions.
4 In the Options menu, toggle Press the | Both the Both the Responsive,
the Snap Turn function and buttons snap-turn snap-turn showed
Music off. beside function and | function and | correct input.

the “Snap | the music are | the music (Note: the
Turn” turned off. were turned | snap-turn
and off. function
“Music” would not re-
items. enable once
turned off.)
On the Riddles canvas, select Press the | The Riddles The Riddles Responsive,
the Start button to begin the Start canvas is canvas was showed
quiz. button enabled. enabled. correct input.
below
the text
panel.
During the Riddles quiz, Select the | The original The original Responsive,
answer a riddle wrongly. wrong text panel text panel showed
answer should reappeared, | correctinput.
toa reappear, and the user
riddle. and the user | was able to
should be restart the
able to question.
restart the
question.
During the Riddles quiz, Select the | The next The next Responsive,
answer a riddle correctly. correct riddle in the riddle in the | showed
answer series should | series correct input.
toa appear, until | appeared,
riddle. the last is until the last
reached. was reached.
Then, the Then, the
canvas canvas
should disappeared
disappear completely.
completely.
On the Victory screen, select Select the | The Ul should | The Ul Semi-
the Play Again button. Play appear in appeared functional.
Again front of the too far away
button player, and from the
from the | the player player,
Ul should be instead of
able to play directly in
the game front;
again. however,
the player
was able to
play the

game again.

6.2.2 Movement & Controls
Test | Description of test case Input Expected Actual Comment
No Output Output
1 Teleport to a new location Toggle the | The useris The user was | Responsive,
on the floor. rays using teleported to | teleported showed
the Quest a hew to a new correct input.
controllers’ | location in location in
XorA the room. the room.
buttons,
then press
the grab
button.
2 Using the rays, grab an Toggle the | The The Responsive,
interactable object. rays using interactable interactable | showed
the Quest object snaps | object correct input.
controllers’” | to the snapped to
XorA location of the location
buttons, the user’s of the user’s
then press hand. hand.
the grab
button.
3 Using only hands, grab an Place hand | The The Responsive,
interactable object. over an interactable interactable | showed
interactable | object snaps | object correct input.
object. to the snapped to
location of the location
the user’s of the user’s
hand. hand.
6.2.3 Activities
Test | Description of test case Input Expected Actual Comment
No Output Output
1 Locate a plank of wood and | Grab the The plank is The plank Responsive;
use it to move a key to the interactable | picked up by | was able to however, not
cell door. plank and the user, be picked up | optimal and
push the used to by the user; only semi-
key from knock the however, it functional.
the shelf key off the was not easy
towards shelf, and slid | to
the cell. across the manipulate
floor to the the key with
cell. it.
Furthermore,

both plank

and key

would
occasionally
fall through
the floor.
Pick up key and place it in Grab the The key The key Responsive,
the lock. key object, | snapstothe | snapped to showed
and place it | lock and the lock and | correct input.
inthe lock | causes the caused the
socket door to door to
attached to | open. open.
the cell
door.
Locate a crystal ball stand Pick up the | The crystal The crystal Responsive,
and place the ball in it. crystal ball | ball snapsto | ball snapped | showed
object, and | the stand’s to the correct input.
placeitin socket, and stand’s
the crystal causes the socket, and
ball stand. wall behind it | caused the
to disappear. | wall behind
itto
disappear.
Locate a wooden stand, and | Pick up The gems The gems Responsive,
three coloured gems to put | each of the | snap to their | snapped to showed
in it. Put the coloured gems | gems, place | sockets, and | their sockets, | correct input.
in the stand. them in the | cause the and caused
sockets of coloured the coloured
the stand. crystals to crystals to
disappear. disappear.
Locate a desk, and place a Pick up the | The book The book Responsive,
book on it. book object | snapstothe | snapped to showed
and bring it | socket on the | the socket correct input.
to the desk. | desk. on the desk.
Remove the magic fields Answer the | The magic The magic Responsive,
blocking the kitchen. three fields fields showed
riddles disappear. disappeared. | correct input.
correctly.
Use an appropriate food Pick up a The wolf The wolf The food
item to distract the wolf. food item moves occasionally | items were
and place it | towards the moved able to be
within food item, towards the | handled by
range of and once food source; | the player,
the wolf. close however, however the
enough, most times, wolf did not
begins to eat | it remained always
it. in the idle respond as it
pose, not should have.
detecting the | It would
food at all. either remain
Other times, | in theidle
it would pose, or only

move target certain
towards food | items.
sources not Therefore,
selected by this feature
the player, remained

or would semi-

only detect functional.
certain food

items.
8 Go to the exit and step Move to The Victory The Victory Responsive,
outside the door. the last screen screen was showed
room and should triggered. correct input.
out the trigger.
door.

6.2.4 Discussion of Functional Testing Results

From the results of the functional testing, it could be concluded that most of the core mechanics of
AbyssScape worked as intended. There were, however, areas for improvement, such as the wolf
mechanic and the user interface of the victory screen showing up wrongly. It was decided that the
wolf mechanic would continue to be worked on, as when it worked correctly, it formed an
impressive part of the game experience.

All in all, however, the game functioned as intended.

6.3 User Testing

6.3.1 Introduction

As AbyssScape is a virtual reality game, the aims and uses of it would be different to a mobile app,
website, or conventional game. However, there were still clear aims and use cases in mind when
developing the project.

The game was primarily designed to cater towards those already somewhat familiar with VR,
although it would also be simple enough for the inexperienced to play. It also is not particularly
intensive. The game offers smooth controls, low-poly graphics, and minimal sound. Added to this is
the fact that the Quest 2 headset is much more accessible and user-friendly than both its
predecessors and competitors.

Above all, the game sought out to create an immersive puzzle experience, that could be enjoyed by
any kind of player.

6.3.2 Ease of Learning vs. Ease of Use Testing

The game was not intended to primarily be an ease-of-learning exercise; however, with VR still
failing to reach a mainstream audience, it was anticipated that most users would have little to no
experience of VR environments. Therefore, certain tasks were designed to ease the players into the

game, such as learning how to move and pick up items. Other tasks, such as locating items and
answering riddles, were designed to test how easy it was to perform these actions. They were also
elements with which more seasoned gamers might be familiar; therefore, eliminating the need to
“learn” such mechanics.

6.3.3 User Testing Tasks

The tasks presented to the users can be seen below.

6.3.3.1 Task 1
On the Main Menu screen, locate the “Help” button.

Press this button, read the controls panel, and exit the screen.

Then, locate the “Options” button. Press this button, find how to toggle music off, then back on.

6.3.3.2 Task?2
Play the game, and find out how to toggle rays and move around.

Then, locate an interactable plank of wood at the end of the cell. Find out how to pick it up.
Look outside the cell for a key object. Once located, find out how to move it.

When key is within reach, pick it up, and find how to unlock the door.

6.3.3.3 Task 3
Locate a crystal ball stand in the room, then the ball to put in it.

Once this is done, locate a wooden stand, then three coloured gems to put in it.

There is a hint in the room as to what order the gems should be placed; find out what it is.

6.3.3.4 Task4
In the next room, locate a desk. Then, look around for a book to place on it.

Then, locate the “Riddles” canvas. Answer the riddles. (Do not worry if they are not answered
correctly the first time — there are multiple attempts allowed.)

Locate a wolf guarding the next door, then find a suitable food item to distract it.

Once this is complete, find the exit.

6.3.4 Ideal Participants

The ideal participants of this game fell into two categories: those who played games, but had limited
experience of VR; and those who had little to no experience of games or VR. It was felt that this was
the best way to get measured, unbiased results.

For the following user testing sessions, two gamers, who fit these criteria, were approached about
the activity, and gave their consent to testing the game. One of these was a gamer who had had
prior experience with VR games, though not to a great extent; the other, a gamer with no prior
experience, who had before only played non-VR games. Both, however, were familiar with the area
of gaming as a whole; though VR games are noticeably different in many ways, this, too, would
prove valuable.

6.3.5 Test Environment
User tests were conducted in person, as virtual reality is not suited to remote testing.

To carry out user testing, a build was first made of the application, and loaded onto the Oculus
Quest 2 headset. The tester would then put on this headset, and play through the game, performing
the tasks required (see 6.3.3).

The user testing was informal, with both a family member and a close partner agreeing to take part.
The screen was not recorded, but both testers’ observations were noted, and were consequently
transcribed here.

Overall, the user testing took place in a casual, relaxed atmosphere, which made the test users feel
at ease.

6.3.6 Analysis of Data and Recommended Design Changes

There were some very useful observations made during the user tests. Though the two testers were
both people who enjoyed games, they both had limited experience of VR applications. This yielded
interesting results, as not only were they able to draw on their knowledge of pre-existing games, but
also how to make VR experiences better, especially for those new to the area.

Common observations during testing included:

e There was no reset button in the Options menu, and consequently no way to revert certain
choices.

e Interactable objects sometimes clipped through the floor when dropped.

e The key was too hard to move to the cell door.

o The coloured gems looked too similar to the crystal ball, and could be easily mistaken for
one another.

e Certain text options on the Riddles canvas overlapped each other, making it too easy to
accidentally select the wrong answer.

e The wolf Al was not consistent. It would either not detect the items it should, and
consequently not move; or, it would instead target the wrong items.

e The Victory Screen Ul would not appear in front of the player.

e The haptic feedback in the controllers when objects were grabbed was not strong enough to
be felt.

Feedback on the game was, however, overall positive. Testers responded by saying they would
recommend the game to others. However, it was clear that several adjustments were necessary to
provide an even more enjoyable experience.

Recommended design changes included the following:

e Including a reset button on the Options screen, to revert any changes made.

e Ensuring consistent physics on all interactable items.

o Refining the colliders on the text answers to the riddles, to avoid accidentally answering
wrongly.

e Improving the wolf Al, so it would correctly target the item the player picked up, and move
towards it.

e Fixing the position of the Victory Screen Ul, so it appears in front of the player.

e Increasing the strength of the haptic feedback when objects are picked up.

6.3.7 Personal Reflection

Overall, the user testing process ran smoothly. At first, difficulties were faced, such as the test build
of the game failing to load, and parts of the game not functioning as they should. Ultimately, though,
these were of little hindrance to the experience, and instead presented learning opportunities. Once
these difficulties were overcome, the tests proceeded as normal.

It was also refreshing to be able to carry out the tests in-person, rather than remotely. With previous
projects, user testing was carried out over software such as Microsoft Teams. Though this testing
yielded similar results, it was ultimately not as fulfilling as in-person testing. When carrying out user
testing in-person, subtle cues such as body language can also be used to gauge interest and/or
enjoyment. This is simply not possible during remote testing.

6.4 Testing Materials
Materials relevant to the testing process, such as pre- and post-test questionnaires and their
responses, can be found in the Appendix.

6.5 Conclusion

This chapter has discussed the results of both functional and user testing. The functional testing ran
smoothly, with all but a few key mechanics working as intended. Similarly, the user testing proved
successful. Comments from the game’s testers were taken on board as valuable suggestions, and
overall user feedback indicated that the game was fun and enjoyable.

User testing and functional testing are both essential to an application’s development, be it a game,
mobile app, or website. The functional testing was useful in determining areas that could be
improved upon in future, as was the user testing. Combined, they gave valuable insight into which
areas could be iterated upon to provide an even more enjoyable, immersive game experience.

/ Project Management

7.1 Introduction

This chapter describes how the project was managed and how well it was managed individually. It
shows the phases of the project, going from the project idea through to research, requirements
gathering, the specification for the project, the design, implementation, and testing phases for the
project. It also discusses Trello, GitHub and project developer’s journals as tools which assisted in
the project management.

7.2 Project Phases

7.2.1 Proposal

The initial proposal for the project was to create an interactive fantasy virtual reality environment.
This idea was decided upon as creating games within Unity was considered a strong suit for the
project developer. In addition, a virtual reality module had been completed in the previous term,
resulting in an interactive application with a similar vision and overall aesthetic design. It was also
decided that this project would utilise a different art style to the former. Once this idea was set in
motion, it was proposed to the project supervisor.

7.2.2 Research

Before the project could commence, research was undertaken into the area of immersive gaming
technologies, and how, with AR and VR, games are only becoming more immersive. During this
phase, a literature review was conducted, which examined several sources. Each detailed important
design aspects, how they contribute to positive experiences, and how they can be applied to games
to provide the player with a memorable experience.

7.2.3 Requirements

Requirements gathering, though not difficult, required a lot of research into the area of VR games
and applications. Though this was an area of great interest to the project developer, it is also
undoubtedly a young and upcoming technological area. However, similar games were found and
researched, the features contained within carefully analysed and noted for inclusion in the final
project. In addition, a survey was launched, and interviews were conducted, both to determine a
prospective audience, and to find what would entice players new to VR to play such a game. From
these results, personas were then drawn up. These reinforced the requirements needed for the
game to succeed in its goal.

7.2.4 Design

Wireframes of the game’s user interface, as well as how it would appear to the player in VR, were
drawn up. In addition, processes contained within, such as obstacles faced by the player, were
storyboarded, to get an idea of the game’s flow and navigation. As new puzzles and challenges were

imagined, and iterated upon, new storyboards and game screens were designed to aid in their
implementation. Ul assets, visual style, and colour schemes were also considered.

7.2.5 Implementation

During the implementation phase, the game was developed inside Unity, and the code for the
gameplay tasks was written in Visual Studio Code. A lot of the code was reused from previous VR
applications developed; however, several tutorials and online guides were also consulted, to speed
up the process and learn how to implement tricky features.

There were some issues during this phase; mainly in the form of processes that were harder to
implement than imagined. Some of these processes were eventually scrapped, and already existing
aspects were instead improved. Others were only partially implemented, but in a way that ensured
they were not game-breaking.

7.2.6 Testing

The testing process involved both functional testing, in which the core functions of the game were
tested; and user testing, in which the game was tested by others. Functional testing helped in finding
bugs and mechanics which were not working optimally, while user testing examined how others
found the gameplay. Both sets of results provided a useful insight into areas for improvement,
particularly should the game continue to be developed.

7.3 SCRUM Methodology

It was felt that working in sprints was highly conducive to the project development experience. It
helped break down each task, or set of tasks, into manageable portions. This in turn ensured that
the workload never felt overwhelming — each task felt achievable during the fortnightly timeframe. It
also assisted in keeping the project focus on the most important tasks — if a task could not feasibly
be achieved within the two weeks, it was deemed best to leave it be, and instead focus on another
task.

Alternatively, the fortnightly timeframe of each sprint meant that some tasks could be completed
quickly, leaving time to implement items on the project backlog. Again, though, if these took too
long to implement, there were left out of the final product.

7.4 Project Management Tools

7.4.1 Trello

Trello is a tool that mainly utilises Kanban-style boards. These boards can be split into lists, which is
useful for visualising tasks that are to be done, tasks currently in progress, and tasks completed. It
can however be customised in whichever way the user sees fit.

Each item on the list, referred to as a card, can also be given unique colour-coded labels. This helps
the user visualise, at a glance, which kind of task the card refers to. For example, a bug needing

attention might be given a red label, whereas a completed task might be labelled as green. Other
useful features can also be added to cards, such as checklists and deadlines.

" Board v Major Project - VR Game 1 College B Private Q

Backlog Doing Bugs or Issues Done

Diegetic Pause Menu (book)

SPRINTS 5 & 6 - Implementation n (

®apris

ons, Help screen is

Design of further puzzles, incl. small

even by other but
tertiary room N |

-
for match-3

Player does no

awn at right

sired option? Design location upon loading into game .
hink of more puzzles/challenges to
implement

- | -

75
cript for doors so #

inside trigger, they

- for when player complet scene

INTERVIEWS FOR REQUIREMENTS Maks ehain for woll

e - + Add a card - Code "activ
+ Add a card i
when p

-— -
- will open

isible barrier once key has

opened cell door

Crystal ball socket does not trigger

7 wall animation
y for Moving Parts

® o1

doors cause unpredictable

Find way to change tag of wolf's
; bone when picked up

Test functionality of sockets

Wolf enters running state by default

+ Add a card Q

VAR 1in A8

Figure 84: Project Trello board, showing a Backlog list, To Do list, Doing list, Bugs list, and Done list.

Using Trello was a positive experience. It helped the project to stay on track, even when there was a
lot to be completed. Separating each task into its own card — sometimes with unique deadlines
and/or checklists — reduced the workload into manageable chunks, which in turn made the project
less overwhelming. The use of separate lists for tasks to be done, in progress, and completed also
made it easier to visualise what remained to be done, and what was currently being done.

The Trello board could also be updated every week with new suggestions from the project
supervisor. This ensured that each new suggestion was not forgotten about, and could be
implemented in due time.

Overall Trello was a very useful tool, and one which would be utilised in future for other large
projects.

7.4.2 GitHub

GitHub is a version management tool, commonly utilised in software development, which allows
developers to collaborate on projects locally and/or remotely. Using GitHub, developers can “clone”
a software folder, called a repository, from a remote server to their own device. Once changes are
made to this local repository, the files can then be “pushed” to the remote repository. In this way, it
is ensured that the repository hosted remotely is the latest version. From there, the repository, and
its changes, can be “pulled” to a local device by a team member, and the cycle can continue.

This is a good system in theory, but it was not utilised for this project. Unfortunately, GitHub is not
optimised for large files, such as those contained in Unity projects. As Unity projects contain a
multitude of assets, they often grow to a large file size. GitHub is limited to a maximum upload size
of 100MB, and in reality, many Unity projects are not this small.

Large File Storage (LFS) systems are available should a developer need to commit large files — but
this was not necessary for this project. As this project was developed from home, there was no need
to transfer files to a remote server.

7.4.3 Journal/Notes

Though there was no formal journaling of project ideas/reflections, notes were taken frequently
throughout the course of the project. These notes included sprint deadlines and important calendar
dates; which tasks to prioritise; and ideas for material to include in the project report. These notes
were both taken in a Notepad app and on paper. It was felt that handwriting notes was overall more
efficient, as it helped commit to memory areas of particular importance.

Make player spawn at correct location
Match 3/physics puzzle/slide puzzle?

* Introduce a timed element to completion of game?
» Revisit Oculus Quest stats - tris/verts/framerate, etc.

*Mention in report how app build crashing was
overcome - problem and how it was solved, very
useful!™

Figure 85: Snippet from notes.

Figure 86: Section from handwritten notes.

7.5 Reflection

7.5.1 Your views on the project

The project ran quite smoothly, all things considered. Though it was frustrating to work on at times,
it offered me the opportunity to learn new techniques and overcome new challenges. Working with
VR technology was certainly new to me, though this element also kept the project fresh and exciting
in comparison to games made previously. It was also not too difficult to implement this functionality,
as several features utilised in the application had been practiced before in a prior VR application.

| feel that my experience and knowledge of both Unity and the C# language have improved
significantly over the course of the project. This will undoubtedly serve me well should | continue to
develop games as a hobbyist.

Overall, though it had its challenges, the project was a positive experience.

7.5.2 Completing a large software development project

As with similar projects, | found the process of completing such a large-scale project quite insightful.
It taught me a lot about the importance of planning tasks, sticking to deadlines, and which tasks to
prioritise. It also taught me important organisational skills in relation to the visualisation of what was
to be done, what was in progress, and what was completed.

Again, as before, it was surprisingly not a difficult project once all the processes involved were
broken down into sets of smaller tasks. This helped keep the workload manageable, and as a result,
the project never felt overwhelming, even when there was much to be completed.

7.5.3 Working with a supervisor

Working with a supervisor was incredibly helpful throughout this project. Weekly meetings ensured
that the project was kept on track, and important deadlines were reached. These weekly meetings
helped keep me focused, and increased my motivation to complete tasks before the next. Email
communication was frequent; again, this was an immense help in ensuring that deadlines were met.
Overall, my supervisor was incredibly supportive of the project, and was always eager to hear about
each new development as it arose.

7.5.4 Technical skills
Many useful skills were either learned or improved upon during the course of this project.

For example, as mentioned before, the area of virtual reality games was new to me at the start of
the year, and it seemed quite daunting at first. Though | had experience with Unity and C# scripting, |
had never before made a game for VR technologies. It was certainly a new experience; however,
after completing two assignments throughout the VR module during the term, | felt much more
confident in my ability to create games for VR. Added to this was the ease of use of Unity’s inbuilt XR
Interaction Toolkit; it eased the programming of certain processes.

Several tutorials and guides were also followed during the implementation of certain features; the
game was not coded completely from scratch. However, | feel that my overall knowledge of C#
scripting has become stronger as a result of developing this game. Not only was | able to iterate on
scripts written previously, and adapt them for AbyssScape, but | was also able to write code for some
processes completely from my own knowledge. A few scripts were not used in the final product; but,
even so, they were a useful exercise.

Overall, this project only heightened my level of expertise in Unity and C# scripting, with the added
bonus of having experience developing for VR now part of my toolkit.

7.5.5 Further competencies and skills

In terms of further competencies and skills, | would definitely like to continue improving on my Unity
skills. To me, Unity, and the C# language, are beginner-friendly, easy to use, and enjoyable once the
basics are learned. Having gained even more knowledge of these technologies, | would enjoy putting
them into practice in personal projects, and, consequently, improving my skills.

| would also consider making more virtual reality games, if | felt so inclined. Developing for VR was a
new and challenging experience for me, but one that | felt paid off. | look forward to making use of
the technology in future.

7.6 Conclusion

In conclusion, | feel that this project was managed quite well. There were definitely aspects which
could have been handled better - such as fixing problems as they arose, rather than putting them off
until later — but, ultimately, these issues did not hamper the development of AbyssScape in a
meaningful way. This project helped me gain an insight into the value of project management tools
when working on large-scale software projects, particularly as to how they help manage the
workload. The parts of the project with which | struggled, but overcame in the end, will also serve as
a valuable learning experience, particularly should | go on to develop more games in future.

8 Business Opportunities

8.1 Paid Download

An opportunity to monetize the application could come in the form of uploading it to various online
platforms, such as Steam or the Oculus Store, for others to purchase and download. Alternatively,
platforms such as ltch.io or SideQuest could be used for this purpose.

Itch.io is a website where indie developers can upload games and other interactive applications,
such as visual novels, for either free or paid download. Even if a download is free, the site presents
the option to support the creator financially, through donations. Uploading AbyssScape to a platform
like Itch.io — even as a free download — would undoubtedly help it gain popularity.

Another platform frequently used to download and/or purchase software for virtual reality devices is
SideQuest. Through this platform, games can be downloaded and loaded directly onto the user’s
headset without going through the Oculus Store. Consequently, it is frequently used by VR
developers. Like ltch.io, SideQuest makes use of both free and paid downloads — so, like the above, it
would be ideal for monetization, for gaining popularity, or both.

8.2 VRChat/Public VR Spaces

A frequent use case of virtual reality technology is that of virtual “hang out” spaces. This concept has
very much re-entered the public eye since the announcement of Meta’s “metaverse” —an online
shared space which, utilizing VR and/or AR technology, contains persistent virtual worlds that
continue to exist even when you're not playing (Ravenscraft, 2021). These spaces are not games as
such; rather, they are places, much like in real life, where players, represented by their avatars, can
meet, chat, and interact with one another.

Though there are undoubtedly conflicting ideas at present over what “the metaverse” entails, there
are existing applications that function in much the same way. One of the most popular of these is
VRChat, an application where users can take on different personas, explore virtual worlds, and hang
out with friends over voice chat.

VRChat consists completely of user-generated worlds, developed in Unity. Consequently, with some
modifications, AbyssScape could become its own VRChat world, either as an interactive escape
room, or simply an interactive space for players to explore.

8.3 Interactive Simulations

The realm of virtual reality is not exclusive to gaming; indeed, it has many other uses. VR
applications have been used in such areas as healthcare, real estate, and tourism (Thompson, 2017).
The immersion provided by VR technology makes it especially ideal for simulations — interactive
applications used to help overcome phobias. Computer simulations have been proven to reduce the
debilitating effects of phobias such as acrophobia (fear of heights) and arachnophobia (fear of
spiders) (Strickland, Hodges, North, & Weghorst, 1997).

With minor modifications, such a game as AbyssScape could be used as a tool to help overcome
phobias such as claustrophobia (fear of tight spaces) or nyctophobia (fear of the dark).

9 Conclusion

The aim of AbyssScape was to create an immersive, puzzling virtual reality dungeon escape,
demonstrating not only the immersion offered by games, but the enhancements virtual reality
brings to the experience. It would utilise a simplistic, low-poly art style, not only for optimisation
purposes, but as a unique stylistic choice.

Overall, the intended goal was to draw on the principles of immersive gaming to provide a virtual
reality game that would engage and beguile the player through its environment and interactions.

The game was developed using a robust combination of the Unity game engine and C# coding. Unity
is a fun, beginner-friendly development engine, and is well suited to a variety of applications,
including 2D and 3D games, mobile applications, VR games, and more. Though it was already a
familiar technology, using it to create a VR experience was a new and fascinating experience. It
provided many an opportunity for learning and growth.

Throughout the project, many indispensable skills were learned and improved upon. This included
C# programming skills, level design and wireframing, lighting, optimisation, and debugging. It also
strengthened the user testing principles that are so fundamental to modern application design.

The project remained on course throughout the entire process. There were little, if any, aspects
scrapped; most of the planned functionality was implemented in some form.

Undoubtedly, there are many areas in which AbyssScape could be improved, and developed. Were
the game to become a large-scale project, additions might include more rooms to puzzle through, a
wider variety of challenges, an inventory system, and even a boss room, with a large creature, such
as a dragon, for the player to defeat. These would all contribute positively to the sense of peril, yet
heroism, the game sought to evoke.

References

Allen, P. T. (2018, May 16). A brief history of immersion, centuries before VR. Retrieved October 13,
2021, from The Conversation website: https://theconversation.com/a-brief-history-of-immersion-
centuries-before-vr-94835

Armor Games. (2021). A Rogue Escape. Retrieved from
https://store.steampowered.com/app/1476100/A Rogue Escape/

Bannerflow. (2016, July 26). How Pokémon GO and Augmented Reality are changing marketing |
Bannerflow. Retrieved October 21, 2021, from Bannerflow website:
https://www.bannerflow.com/blog/pokemon-go-augmented-reality-changing-marketing/

Berve, C. (2019, November 10). Ignited Ink Writing, LLC | Book Editor | Website/Blog Content
Editor/Writer. Retrieved November 2, 2021, from Ignited Ink Writing, LLC | Book Editor |
Website/Blog Content Editor/Writer website: https://www.ignitedinkwriting.com/ignite-your-ink-
blog-for-writers/how-to-build-atmosphere-in-creative-writing/2019

Bianchi, F. (n.d.). Coolors. Retrieved February 16, 2022, from coolors.co website: https://coolors.co/

Bura, S. (2008, July 29). Emotion Engineering: A Scientific Approach for Understanding Game Appeal.
Retrieved October 7, 2021, from Game Developer website:
https://www.gamedeveloper.com/desigh/emotion-engineering-a-scientific-approach-for-

understanding-game-appeal

Changing the Image of a Button When It Is Clicked in Unity. (2020). Available from
https://www.youtube.com/watch?v=__ M37Mb0a8Q&ab_channel=UnityMechanics

Cherry, B. (2020). Why Are Social Media Sites Blue? How Color Psychology Drives Engagement.
Retrieved October 20, 2021, from Bluleadz.com website: https://www.bluleadz.com/blog/why-are-
social-media-sites-blue

Coffee Duck. (2018). Simple Iron Ul Set Pack | 2D Icons | Unity Asset Store. Retrieved February 16,
2022, from Unity Asset Store website: https://assetstore.unity.com/packages/2d/gui/icons/simple-
iron-ui-set-pack-124295#content

https://theconversation.com/a-brief-history-of-immersion-centuries-before-vr-94835
https://theconversation.com/a-brief-history-of-immersion-centuries-before-vr-94835
https://store.steampowered.com/app/1476100/A_Rogue_Escape/
https://www.bannerflow.com/blog/pokemon-go-augmented-reality-changing-marketing/
https://www.ignitedinkwriting.com/ignite-your-ink-blog-for-writers/how-to-build-atmosphere-in-creative-writing/2019
https://www.ignitedinkwriting.com/ignite-your-ink-blog-for-writers/how-to-build-atmosphere-in-creative-writing/2019
https://coolors.co/
https://www.gamedeveloper.com/design/emotion-engineering-a-scientific-approach-for-understanding-game-appeal
https://www.gamedeveloper.com/design/emotion-engineering-a-scientific-approach-for-understanding-game-appeal
https://www.bluleadz.com/blog/why-are-social-media-sites-blue
https://www.bluleadz.com/blog/why-are-social-media-sites-blue
https://assetstore.unity.com/packages/2d/gui/icons/simple-iron-ui-set-pack-124295#content
https://assetstore.unity.com/packages/2d/gui/icons/simple-iron-ui-set-pack-124295#content

Creating a Mute Button in Unity. (2021). Available from
https://www.youtube.com/watch?v=ZmQAHhZ7784&ab_channel=UnityMechanics

Cyan. (2016). Obduction. Retrieved from https://store.steampowered.com/app/306760/0Obduction/

Design Wizard. (2019, July 8). Color Theory: The Science and Art of Using Color - Design Wizard.
Retrieved October 20, 2021, from Design Wizard website:
https://www.designwizard.com/blog/design-tips/color-theory

DesignCloud. (2019). Why is colour theory important? A guide to powerful graphic design. |
Manchester Digital. Retrieved October 19, 2021, from Manchester Digital website:
https://www.manchesterdigital.com/post/design-cloud/why-is-colour-theory-important-a-guide-to-
powerful-graphic-design

donjon; 5e Random Dungeon Generator. (2022). Donjon.bin.sh. Retrieved February 7, 2022, from
Donjon website: https://donjon.bin.sh/5e/dungeon/

DVNC Interactive. (2018, June 4). Color Theory in Games - An Overview - Bridging Realities. Retrieved
October 7, 2021, from Bridging Realities website: https://dvnc.tech/2018/06/04/color-theory-in-
games-an-overview/

Edensor, T. (2015, August). Light design and atmosphere. Retrieved October 7, 2021, from
ResearchGate website:
https://www.researchgate.net/publication/281336144 Light design and atmosphere

FireproofGames. (2019). The Room VR: A Dark Matter. Retrieved from
https://www.fireproofgames.com/games/the-room-vr-a-dark-matter

Fussell, G. (2020, November 24). The Psychological Meanings Behind Familiar Shapes (And How to
Use Them). Retrieved October 13, 2021, from The Shutterstock Blog website:
https://www.shutterstock.com/blog/psychological-meaning-shapes-use

Hager, E. (2017). Enhanced Immersion in Augmented Reality Applications. Retrieved from
https://liu.diva-portal.org/smash/get/diva2:1183609/FULLTEXTO1.pdf

https://store.steampowered.com/app/306760/Obduction/
https://www.designwizard.com/blog/design-tips/color-theory
https://www.manchesterdigital.com/post/design-cloud/why-is-colour-theory-important-a-guide-to-powerful-graphic-design
https://www.manchesterdigital.com/post/design-cloud/why-is-colour-theory-important-a-guide-to-powerful-graphic-design
https://donjon.bin.sh/5e/dungeon/
https://dvnc.tech/2018/06/04/color-theory-in-games-an-overview/
https://dvnc.tech/2018/06/04/color-theory-in-games-an-overview/
https://www.researchgate.net/publication/281336144_Light_design_and_atmosphere
https://www.fireproofgames.com/games/the-room-vr-a-dark-matter
https://www.shutterstock.com/blog/psychological-meaning-shapes-use
https://liu.diva-portal.org/smash/get/diva2:1183609/FULLTEXT01.pdf

HansCo. (2020). Traditian Font | dafont.com. Retrieved February 10, 2022, from dafont.com
website: https://www.dafont.com/traditian.font

How to make a Quiz Game with Multiple Choices in Unity. (2020). Available from
https://www.youtube.com/watch?v=G9QDFB2RQGA&ab_channel=TheGameGuy

lyer, A. (2018, June 10). Bastion: How to Design an Atmospheric Video Game - SUPERJUMP.
Retrieved October 7, 2021, from Medium website: https://superjumpmagazine.com/bastion-how-
to-design-an-atmospheric-video-game-cfc4a435d5a9

James, L. (2019, May). How to Create Atmosphere in Video Games — GameSpew. Retrieved October
7, 2021, from GameSpew website: https://www.gamespew.com/2019/05/create-atmosphere-in-
ames

Jarvis, P. (2014, February 25). The importance of emotion in design. Retrieved November 3, 2021,
from TNW | Dd website: https://thenextweb.com/news/importance-emotion-
design#.tnw_foJRpGmA

Komninos, A. (2020, March 22). Emotion and Design. Retrieved October 13, 2021, from The
Interaction Design Foundation website: https://www.interaction-
design.org/literature/article/emotion-and-design

Kumar, J. M., Herger, M., & Dam, R. F. (2018, November 20). A Brief History of Games. Retrieved
October 13, 2021, from The Interaction Design Foundation website: https://www.interaction-
design.org/literature/article/a-brief-history-of-games

Mairi. (2022, January 13). The Best VR Escape Rooms on Oculus Quest 2 - The Escape Roomer.
Retrieved May 3, 2022, from The Escape Roomer website: https://theescaperoomer.com/the-best-
vr-escape-rooms-on-oculus/

McRae, E. (2017, August 9). Designing game environments that are rich with story. Retrieved
October 7, 2021, from EDWIN MCRAE website: https://www.edmcrae.com/article/designing-game-
environments-that-are-rich-with-story

Mehrafrooz, B. (2020, June 11). 10 Most Common Challenges of Designing Great Game
Environments - Pixune. Retrieved October 7, 2021, from Pixune website: https://pixune.com/9-
most-common-challenges-in-game-environment-design/

https://www.dafont.com/traditian.font
https://superjumpmagazine.com/bastion-how-to-design-an-atmospheric-video-game-cfc4a435d5a9
https://superjumpmagazine.com/bastion-how-to-design-an-atmospheric-video-game-cfc4a435d5a9
https://www.gamespew.com/2019/05/create-atmosphere-in-games/
https://www.gamespew.com/2019/05/create-atmosphere-in-games/
https://thenextweb.com/news/importance-emotion-design#.tnw_foJRpGmA
https://thenextweb.com/news/importance-emotion-design#.tnw_foJRpGmA
https://www.interaction-design.org/literature/article/emotion-and-design
https://www.interaction-design.org/literature/article/emotion-and-design
https://www.interaction-design.org/literature/article/a-brief-history-of-games
https://www.interaction-design.org/literature/article/a-brief-history-of-games
https://theescaperoomer.com/the-best-vr-escape-rooms-on-oculus/
https://theescaperoomer.com/the-best-vr-escape-rooms-on-oculus/
https://www.edmcrae.com/article/designing-game-environments-that-are-rich-with-story
https://www.edmcrae.com/article/designing-game-environments-that-are-rich-with-story
https://pixune.com/9-most-common-challenges-in-game-environment-design/
https://pixune.com/9-most-common-challenges-in-game-environment-design/

Meyer, B. D. (2016, August 3). Evoking emotion in pure sound design. Retrieved October 13, 2021,
from Designingsound.org website: https://designingsound.org/2016/08/03/evoking-emotion-in-
pure-sound-design/

MK Illumination. (2020). Creating atmosphere at Christmas markets yields measurable results.
Retrieved November 1, 2021, from MK Illumination website: https://www.mk-
illumination.com/article/creating-atmosphere-at-christmas-markets-yields-measurable-results/

Mutterlein, J. (n.d.). The Three Pillars of Virtual Reality? Investigating the Roles of Immersion,
Presence, and Interactivity. Retrieved from
https://scholarspace.manoa.hawaii.edu/bitstream/10125/50061/paper0174.pdf

Nadri, T. (2020). Standrag Font | dafont.com. Retrieved February 10, 2022, from dafont.com
website: https://www.dafont.com/standrag.font

Overflow. (2017). Conductor. Retrieved from
https://store.steampowered.com/app/584930/Conductor/

Ravenscraft, E. (2021, November 25). What Is the Metaverse, Exactly? Wired; WIRED.
https://www.wired.com/story/what-is-the-metaverse/

Ribeiro, G., Rogers, K., Altmeyer, M., Terkildsen, T., & Nacke, L. E. (2020). Game Atmosphere.
Proceedings of the Annual Symposium on Computer-Human Interaction in Play.
https://doi.org/10.1145/3410404.3414245

Roach, B. (2012). Elementary Gothic Bookhand Font | dafont.com. Retrieved February 10, 2022,
from dafont.com website: https://www.dafont.com/elementary-gothic-bookhand.font

Rossi, C. (2020). Psychology of light: creating the right atmosphere for every environment. Retrieved
October 13, 2021, from Karmanitalia.it website: https://storybox.karmanitalia.it/en/psychology-
light-creating-atmosphere

Ryu, H. (2020, August 3). How to bring your game world to life with impactful sound design.
Retrieved October 19, 2021, from GamesIndustry.biz website:
https://www.gamesindustry.biz/articles/2020-08-03-how-to-bring-your-game-world-to-life-with-
impactful-sound-design

https://designingsound.org/2016/08/03/evoking-emotion-in-pure-sound-design/
https://designingsound.org/2016/08/03/evoking-emotion-in-pure-sound-design/
https://www.mk-illumination.com/article/creating-atmosphere-at-christmas-markets-yields-measurable-results/
https://www.mk-illumination.com/article/creating-atmosphere-at-christmas-markets-yields-measurable-results/
https://scholarspace.manoa.hawaii.edu/bitstream/10125/50061/paper0174.pdf
https://www.dafont.com/standrag.font
https://store.steampowered.com/app/584930/Conductor/
https://www.wired.com/story/what-is-the-metaverse/
https://doi.org/10.1145/3410404.3414245
https://www.dafont.com/elementary-gothic-bookhand.font
https://storybox.karmanitalia.it/en/psychology-light-creating-atmosphere
https://storybox.karmanitalia.it/en/psychology-light-creating-atmosphere
https://www.gamesindustry.biz/articles/2020-08-03-how-to-bring-your-game-world-to-life-with-impactful-sound-design
https://www.gamesindustry.biz/articles/2020-08-03-how-to-bring-your-game-world-to-life-with-impactful-sound-design

Schafer, S. B. (2011). Handbook of Research on ICTs for Human-Centered Healthcare and Social Care
Services. Retrieved November 2, 2021, from Google Books website:
https://books.google.ie/books?id=5dGeBQAAQBAI& pg=PA47&Ipg=PA47&dg=immersion+is+a+proce
ss+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94somethin
g+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl
&0ts=903TCpyW7p&sig=ACfU3U1CC8PjlJofFIi9wgGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7
gqg2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#vV=0nepage&g=immersion%20is%20a%20process%200f
%20temporarily%20expanding%20consciousness%20into%20areas%200f%20the%20unconscious%E
2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one
%20d0es%20in%20lucid%20dreaming%20states&f=false

Schell Games. (2021). | Expect You To Die. Retrieved from https://iexpectyoutodie.schellgames.com/

Scruton, R. (2021). aesthetics | Definition, Approaches, Development, Meaning, Examples, & Facts |
Britannica. In Encyclopaedia Britannica. Retrieved from https://www.britannica.com/topic/aesthetics

Shelley, J. (2017). The Concept of the Aesthetic (Stanford Encyclopedia of Philosophy). Retrieved
November 2, 2021, from Stanford.edu website: https://plato.stanford.edu/entries/aesthetic-
concept/#ConAes

Slater, M. (2018). Immersion and the illusion of presence in virtual reality. British Journal of
Psychology, 109(3), 431-433. https://doi.org/10.1111/bjop.12305

Stankovic, S. (2021, June 6). The shape, the color, and the emotion: Angry Birds’ character design.
Retrieved October 7, 2021, from Medium website: https://uxdesign.cc/character-design-of-angry-
birds-4a74feb90e8¢c

Strickland, D., Hodges, L., North, M., & Weghorst, S. (1997). Overcoming phobias by virtual exposure.
Communications of the ACM, 40(8), 34—39. https://doi.org/10.1145/257874.257881

Thomas, F. (2018). Why good sound design matters. Retrieved October 21, 2021, from
Productionattic.com website: https://www.productionattic.com/blog/why-good-sound-design-
matters

Thompson, S. (2017, April 6). VR Applications: 23 Industries using Virtual Reality. Retrieved May 3,
2022, from Virtualspeech.com website: https://virtualspeech.com/blog/vr-applications

https://books.google.ie/books?id=5dGeBQAAQBAJ&pg=PA47&lpg=PA47&dq=immersion+is+a+process+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94something+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl&ots=9o3TCpyW7p&sig=ACfU3U1CC8PjlJofFlj9wqGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7qq2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#v=onepage&q=immersion%20is%20a%20process%20of%20temporarily%20expanding%20consciousness%20into%20areas%20of%20the%20unconscious%E2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one%20does%20in%20lucid%20dreaming%20states&f=false
https://books.google.ie/books?id=5dGeBQAAQBAJ&pg=PA47&lpg=PA47&dq=immersion+is+a+process+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94something+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl&ots=9o3TCpyW7p&sig=ACfU3U1CC8PjlJofFlj9wqGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7qq2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#v=onepage&q=immersion%20is%20a%20process%20of%20temporarily%20expanding%20consciousness%20into%20areas%20of%20the%20unconscious%E2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one%20does%20in%20lucid%20dreaming%20states&f=false
https://books.google.ie/books?id=5dGeBQAAQBAJ&pg=PA47&lpg=PA47&dq=immersion+is+a+process+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94something+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl&ots=9o3TCpyW7p&sig=ACfU3U1CC8PjlJofFlj9wqGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7qq2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#v=onepage&q=immersion%20is%20a%20process%20of%20temporarily%20expanding%20consciousness%20into%20areas%20of%20the%20unconscious%E2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one%20does%20in%20lucid%20dreaming%20states&f=false
https://books.google.ie/books?id=5dGeBQAAQBAJ&pg=PA47&lpg=PA47&dq=immersion+is+a+process+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94something+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl&ots=9o3TCpyW7p&sig=ACfU3U1CC8PjlJofFlj9wqGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7qq2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#v=onepage&q=immersion%20is%20a%20process%20of%20temporarily%20expanding%20consciousness%20into%20areas%20of%20the%20unconscious%E2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one%20does%20in%20lucid%20dreaming%20states&f=false
https://books.google.ie/books?id=5dGeBQAAQBAJ&pg=PA47&lpg=PA47&dq=immersion+is+a+process+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94something+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl&ots=9o3TCpyW7p&sig=ACfU3U1CC8PjlJofFlj9wqGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7qq2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#v=onepage&q=immersion%20is%20a%20process%20of%20temporarily%20expanding%20consciousness%20into%20areas%20of%20the%20unconscious%E2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one%20does%20in%20lucid%20dreaming%20states&f=false
https://books.google.ie/books?id=5dGeBQAAQBAJ&pg=PA47&lpg=PA47&dq=immersion+is+a+process+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94something+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl&ots=9o3TCpyW7p&sig=ACfU3U1CC8PjlJofFlj9wqGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7qq2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#v=onepage&q=immersion%20is%20a%20process%20of%20temporarily%20expanding%20consciousness%20into%20areas%20of%20the%20unconscious%E2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one%20does%20in%20lucid%20dreaming%20states&f=false
https://books.google.ie/books?id=5dGeBQAAQBAJ&pg=PA47&lpg=PA47&dq=immersion+is+a+process+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94something+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl&ots=9o3TCpyW7p&sig=ACfU3U1CC8PjlJofFlj9wqGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7qq2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#v=onepage&q=immersion%20is%20a%20process%20of%20temporarily%20expanding%20consciousness%20into%20areas%20of%20the%20unconscious%E2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one%20does%20in%20lucid%20dreaming%20states&f=false
https://books.google.ie/books?id=5dGeBQAAQBAJ&pg=PA47&lpg=PA47&dq=immersion+is+a+process+of+temporarily+expanding+consciousness+into+areas+of+the+unconscious%E2%80%94something+like+hypnosis,+but+retaining+consciousness+as+one+does+in+lucid+dreaming+states&source=bl&ots=9o3TCpyW7p&sig=ACfU3U1CC8PjlJofFlj9wqGwozUDUG7iyw&hl=en&sa=X&ved=2ahUKEwjcg7qq2frzAhULHcAKHT40DQAQ6AF6BAgQEAM#v=onepage&q=immersion%20is%20a%20process%20of%20temporarily%20expanding%20consciousness%20into%20areas%20of%20the%20unconscious%E2%80%94something%20like%20hypnosis%2C%20but%20retaining%20consciousness%20as%20one%20does%20in%20lucid%20dreaming%20states&f=false
https://iexpectyoutodie.schellgames.com/
https://www.britannica.com/topic/aesthetics
https://plato.stanford.edu/entries/aesthetic-concept/#ConAes
https://plato.stanford.edu/entries/aesthetic-concept/#ConAes
https://doi.org/10.1111/bjop.12305
https://uxdesign.cc/character-design-of-angry-birds-4a74feb90e8c
https://uxdesign.cc/character-design-of-angry-birds-4a74feb90e8c
https://doi.org/10.1145/257874.257881
https://www.productionattic.com/blog/why-good-sound-design-matters
https://www.productionattic.com/blog/why-good-sound-design-matters
https://virtualspeech.com/blog/vr-applications

Tyler, D. (2017, March 11). Video Game Sound Design | Beginner’s Guide. Retrieved October 19,
2021, from Gamedesigning.org website: https://www.gamedesigning.org/learn/video-game-sound/

Vunira Design. (2020). Dragon Font | dafont.com. Retrieved February 10, 2022, from dafont.com
website: https://www.dafont.com/dragon-3.font

W, N. (2018, November 15). VR & diegetic Interfaces: don’t break the experience! Medium; UX
Collective. https://uxdesign.cc/vr-diegetic-interfaces-dont-break-the-experience-554f210b6e46

Wizards of the Coast. (1993). Dungeons & Dragons. Retrieved from https://dnd.wizards.com/

https://www.gamedesigning.org/learn/video-game-sound/
https://www.dafont.com/dragon-3.font
https://uxdesign.cc/vr-diegetic-interfaces-dont-break-the-experience-554f210b6e46
https://dnd.wizards.com/

Appendix

There was a lot of content contained in this report which was too long to include in the respective

chapters. That information can be found here.

ltem 1: Interview Results

A wide variety of answers were received from different types of gamers. These answers can be seen

below.

(10/02/2022) Interview conducted with a 25-year-old gamer from Dublin, Ireland

Do you play games? Yes

Apart from playing games, what other hobbies

do you have? Guitar, Cycling

How old are you? 25

What is your occupation? Consultant Engineer

What is your highest level of education?
Honours Degree

What games do you typically buy and why?
Racing, shooters, puzzle games, | have a wide
variety of games | enjoy

Do you read games reviews and why/why not?

No, | watch trailers and use these as a guide

Do you write reviews for games? No

What are your main reasons for playing
games? To relax and spend time with my
friends who live abroad

Have you ever played a virtual reality game? If

so, which? Yes, Beat Sabre, resident evil

If you haven’t played any VR games, would
you consider it?

What kind of VR game or experience do
you/would you most enjoy? An immersive
simulation

How many hours do you play games each day
on average? 2-3

How many hours do you/would you play VR
games? 1-2

Do you find that you lose track of time easily
when playing games? yes

Why do you think this happens? (Engrossing
story, gameplay, etc.) Story line or fun with
friends and chatting

In your opinion, would a game feel
lacking/incomplete if missing key elements,
such as sound, Ul, or characters? yes

Would you prefer VR games or non-VR games,
do you think? Non-VR

What player type describes you best, and
why? Relaxed but immersed, get engrossed in
an enjoyable game

(10/02/2022) Interview conducted with a 21-year-old gamer from Dublin, Ireland

Do you play games? yes

Apart from playing games, what other hobbies
do you have? Filmmaking, writing, cigars, music,
exercising

How old are you? 21

What is your occupation? Student

What is your highest level of education? PLC L5
What games do you typically buy and why?
Nintendo (Mario, Animal Crossing, Dr.
Kawashima etc.) PC (SimCity, Sims, edutainment
games from childhood), GTA

Do you read games reviews and why/why not?
Only afterwards so | don’t taint my own
experience

Do you write reviews for games? Nah

What are your main reasons for playing
games? | like being able to sink my teeth into

the games and immerse in them

Have you ever played a virtual reality game? If
so, which? Nah

If you haven’t played any VR games, would you
consider it? All day

What kind of VR game or experience do
you/would you most enjoy? One that’s
immersive

How many hours do you play games each day
on average? 2-3

How many hours do you/would you play VR
games? 2-3?

Do you find that you lose track of time easily
when playing games? YES

Why do you think this happens? (Engrossing
story, gameplay, etc.) Get too lost in it

In your opinion, would a game feel
lacking/incomplete if missing key elements,
such as sound, Ul, or characters? Yea but it
depends on the game, I’'m typically picky before
buying anyway

Would you prefer VR games or non-VR games,
do you think? Non

What player type describes you best, and why?
angry Passionate

(11/02/2022) Interview conducted with a 27-year-old gamer from Meath, Ireland

Do you play games? Yes
Apart from playing games, what other hobbies
do you have? Cosplay, illustration, fursuit

making

How old are you? 27

What kind of VR game or experience do
you/would you most enjoy? | have only played
vrchat, but | really enjoyed getting to share a
space with my friends in a virtual world even
when we were miles apart

What is your occupation? Student

What is your highest level of education? Level
8

What games do you typically buy and why?
Story heavy, single player rpg’s. Story is one of
the most important things for me.

| also buy a lot of pixel art games as | love that
style, and you usually find more projects by
indie developers in that genre, which usually
means more unique and surprising experiences

Do you read games reviews and why/why not?
Yes, | love to get a sense of what other people
think about games, and | don’t have a lot of
expendable income, so | want to make sure
each purchase is well researched

Do you write reviews for games? Extremely
rarely, | want to make more though

What are your main reasons for playing
games? It's a great de-stresser and a fantastic
source of inspiration

Have you ever played a virtual reality game? If
so, which? Only vrchat

If you haven’t played any VR games, would
you consider it? Yes | would

How many hours do you play games each day
on average? Currently 0.5 as I’'m in my final
year of college, outside of college hours it could
be 1 or 2 hours a day, sometimes 8 if I'm going
on a binge

How many hours do you/would you play VR
games? Currently 0, and I've only played about
12 hours of vrchat in the last 2 years, but | want
to make a personal model and play more after
college

Do you find that you lose track of time easily
when playing games? Yes, very much so!

Why do you think this happens? (Engrossing
story, gameplay, etc.) Engrossing story for
sure, but also immersive and challenging
gameplay. If | don’t feel challenged in a game, |
can tend to lose interest a lot faster. Also,
relatable and interesting character arcs is a
huge reason for losing track of time playing.

In your opinion, would a game feel
lacking/incomplete if missing key elements,
such as sound, Ul, or characters? For most
games yes, | think it would take a lot of skill to
make a successful game missing these key
features, but it has been done in the past (eg,
stanley parable with no character
development)

Would you prefer VR games or non-VR games,
do you think? Non vr personally, but that might
be heavily due to the fact that up until recently,
my laptop couldn’t handle vr games, and as I’'m
in final year, | haven’t really been able to try
playing vr games yet

What player type describes you best, and
why?

| think I’'m a retro gamer, | tend to prefer older
titles, or remasters of old games (eg. Spyro
Reignited). I'm a girl gamer, with a focus on
rpg’s, fantasy, and games with romance
systems. | also like to seek out rare and obscure
games, and | have a lot of in depth knowledge
on a wide variety of games, most of which |

never even played, but | researched from
getting interested in watching Let’s Plays on
YouTube, and falling in love with the characters
and story.

(11/02/2022) Interview conducted with a 22-year-old gamer from Dublin, Ireland

Do you play games? Yes, of the tabletop, card
and video varieties

Apart from playing games, what other hobbies
do you have? Reading non-fiction books
(history especially), reading academic papers,
cosplay, music production, video production,
drawing, electric guitar, finding new musical
genres, learning about computers, game design,
linguistics, conlanging (long list, | could go on)

How old are you? 22

What is your occupation? N/A, previously
student but currently unemployed

What is your highest level of education? Level
8 Bachelor’s Degree

What games do you typically buy and why?
Shin Megami Tensei, Resident Evil, Monster
Hunter, Doom, various indie games

Do you read games reviews and why/why not?
Not usually. | find looking at gameplay and
reading developer provided descriptions of a
game to be more useful than user reviews. The
majority of people could hate a game but |
could love it (e.g Shin Megami Tensei: Devil
Summoner: Raidou Kuzunoha versus the
Soulless Army), likewise there can be massive
acclaim for a game (e.g Elden Ring, Cyberpunk
2077, Read Dead Redemption 2, Doom 4) but |
am completely uninterested and as such the
user reviews mean little to me. Developers
describing their game allows me to see if it
contains elements | am seeking but gameplay
allows me to understand more efficiently, what
a game is offering. Seeing gameplay of Dusk
made me want to buy it immediately.

What kind of VR game or experience do
you/would you most enjoy? VRChat is a casual
chatroom more than a game but | find that
guite enjoyable for conversing with friends. As
for games by a stricter definition, combat and
other mechanics requiring tactility seem quite
weak unless there is some way to simulate
weight and feedback, otherwise less interactive
games may work better such as visual novels.
That being said, Beat Saber has succeeded
without feedback or weight simulation as that
is not its focus. For where virtual reality as a
technology is currently, | do not think reaction
based games fare well due to the limitations.
Card games and tabletop games (e.g Tabletop
Simulator) could be enjoyable as a substitute if
players cannot join in person for geographic or
other reasons and if that was the case, | might
enjoy those games as | prefer them in person
infinitely more than online.

How many hours do you play games each day
on average? Much less than | used to. At most
perhaps an hour or two per day now but it used
to be three to five.

How many hours do you/would you play VR
games? Zero currently. If | had a VR setup likely
not very much save exceptional circumstances
as they require more setup than simply
opening a Steam game and changing some
keyboard bindings.

Do you find that you lose track of time easily
when playing games? It can happen depending
on the game, it happened once in Skyrim when
| was twelve. It happened nearly constantly
with Morrowind. | found myself losing time
with Shin Megami Tensei lll and Soulless Army,

Do you write reviews for games? No because |
do not think anybody cares what | have to say
and | do not find user reviews helpful, as such |
do not participate in writing them even though |
am aware other people value them.

What are your main reasons for playing
games? To be challenged and overcome
difficulty, to understand how the mechanics
work in tandem and if | adore a game enough,
to understand the backend of how everything
operates to then exploit and challenge myself
further. One excellent example is Doom where |
will incessantly search for more information on
its inner workings or YuGiOh where | want to
understand and play as many Archetypes as
possible, specifically those that appeal to me
but | want to understand how the game works
more generally by doing that.

Have you ever played a virtual reality game? If
so, which? Yes, | have played VRChat but never
in VR as my PSVR has never worked properly
even with TrinusVR.

If you haven’t played any VR games, would
you consider it? See answer 10.

along with Soul Hackers. | can also lose track of
time playing Doom 1 and 2 along with map
packs such as Sunlust and Sigil. | also lose time
playing Resident Evil Outbreak with a friend. |
also lose a lot of time playing Factorio...a lot of
time.

Why do you think this happens? (Engrossing
story, gameplay, etc.) In the case of Skyrim, it
was immersion in the world, which | have never
experienced since. For Morrowind it was
fascination by the world but also the mechanics
encouraging me to be constantly vigilant and
keeping my attention as a result, whilst
simultaneously having calm dirt path walks
between settlements to ease the tension. | lose
time in Doom, SMTIII and Soulless Army from
wanting to defeat a boss and focusing all of my
attention on defeating it. | lose time from
Resident Evil Outbreak as my friend and |
strategise on optimising our runs and figuring
out the map to complete it with minimal issue.

| lose time playing Factorio because of its ability
to make me the player want to improve the
efficiency of my factory endlessly and iterate
without end, along with it allowing me to do it
alongside encouraging it.

In your opinion, would a game feel
lacking/incomplete if missing key elements,
such as sound, Ul, or characters? Absolutely,
despite being so mechanically focused | do still
notice sub optimal options menus, missing
textures, sounds, broken sounds, low bitrate
audio, low quality textures and other such
missing elements. These missing elements and
faults do factor into my overall impression of a
game negatively as it lacks basics. If a game
lacks a perfect polish, | am accepting of that,
especially for indie games but missing basic
features is a red flag.

Would you prefer VR games or non-VR games,
do you think? Non-VR for now as the setup
process for VR is more involved and there are
fewer VR games available than non-VR. | also
lack space for proper VR gameplay in my room.

Item 2: User Testing Results

Pre-test Questionnaire Results

Do you play games?

2 responses

What player type describes you best, and
why?

| adore mastery and understanding the
mechanics of a game, how it operates and how
to play within the rules the game has set before
me. | very much appreciate games that are
explicitly games and do not try to hide that
away by being ‘cinematic’ or story driven. | can
enjoy some visual novels but only in small
doses and | had to exert considerable effort to
file them as anime/books rather than games to
set my expectations accordingly. | do also love
an intriguing atmosphere a la Morrowind, Shin
Megami Tensei lll, Resident Evil or even Doom
1. If a game has highly engaging gameplay with
great mechanical depth and an ominous dark
atmosphere it is likely an instant buy from me.

@ Yes
@ No

Sometimes

What are your preferred platforms? |E| Copy

2 responses

PC (Steam, Epic Games etc._) 2 (100%)
Playstation

Kbox

Nintendo (Switch, 3DS etc..)
Android

i0S}-0(0%)

Virtual Reality (Oculus Quest, ...

Have you ever tried a Virtual Reality game?

2 responses

® Ves

® Mo
Does the idea of virtual reality games excite you?
2 responses

® Yes

® No

@ Somewhat

@ Unsure/No opinion

What type of game, do you think, would you most like to see on VR platforms?

2 responses

@ Action

@ Adventure

@ Puzzle

@ Simulator

@ Casual

& Cpen World

@ Social

@ Al of the above

Broadly speaking, what is your favourite game genre?

2 responses

Racing

Platformer

Post-test Questionnaire Results

On a scale of 1- 10, how easy was the main menu to navigate? |E| Copy

2 responses
1.00
0.75
0.50
0.25

0 (l?%} 0 ([ll%} 0 {[ll%} 0(0%) O [?%) 0 [t?%] 0 (t?%} 0 ([?%)

1 2 3 4 5 G 7 8

0.00

If you could improve anything about the Main Menu, what would it be?

2 responses

N/A

the options menu, could be more obvious which is on and off

On a scale of 1- 10, how easy to use was the locomaotion (teleport) system? |E| Copy

2 responses

21(100%)

D(ff%} D(t?%} t}{[ll%) 0 (0%) nul}%) U([ll%) D([i%} D(ff%} nml%)

1 2 3 4 5 B 7 8 El 10

If you could change anything about the locomotion system, what would it be?

2 responses

N/A

the distance you can teleport could be limited to experience walking more in depth

On a scale of 1- 10, how easy was it to interact with items? |E| Copy

2 responses

1.00
0.75
050
025
0(0%) 0(0%) 0(0%) 0(0%) 0(0%) O0(0%) 0 (0%)
000 | | | | |
1 2 3 4 5 6 10

If you could change anything about the interactions with items, what would it be?

2 responses

N/A

Small items had fallen through certain small sections of the floor

On a scale of 1- 10, how easy was it to locate necessary items? |E| Copy

2 responses

1.00
075
050
0.25
0{0%) 0(D%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
| | | | |
0.00
1 2 3 4 5 6 7 10

How would you make items easier to locate?
2 responses
N/A

highlight the item when selecting with the ray

Did you like the graphics style of the game?

2 responses

® Ves
® No
@ Somewhat

How comfortable was the VR experience provided by this game? |D Copy

2 responses

1.00

1 (50%) 1(50%)
0.75
0.50
0.25
0 (0%) 0 (0%) 0 (0%)
0.00 ' |
1 2 3

Did the game immerse you in its world?

2 responses

® Yes
@ No
@ | don't know/MNo opinion

Overall, how much did you enjoy this game? |D Copy

2 responses

2 (100%)

0 (0%) 0 (0%) 0 (0%) 0 (0%)

Would you recommend this game to others?

2 responses

Overall, how would you rate the usability of this game?

2 responses

® Ves
® No
@ Maybe

1.00
075
0.50
025
0(0%) 0(0%) O0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0 (0%)
| | | | |
0.00
1 2 3 4 5 3 7 10

