
Thesis

Motion Planning for Autonomous Vehicles in Ludic Simulation Environments

James Blair

N00162202

Report submitted in partial fulfilment of the requirements for the BSc (Hons) in Creative

Computing at the Institute of Art, Design and Technology (IADT).

1

Table of Contents

Table of Contents 2

Declaration of Authorship 5

Abstract 6

Acknowledgements 7

1. Introduction 8

2.1 Pathfinding Algorithms 9

2.1.2 Path Smoothing 12

2.2 Path Following 15

2.3 Simulation and Gamification of Rules 19

2.4 Summary of Literature Review 22

3. Feasibility Study & Requirements 23

3.1 Requirements Analysis 23

3.1.1 Existing applications 23

3.1.2 User Profile 26

3.1.3 Personas 26

3.2 Requirement Modelling 29

3.2.1 Functional Requirements 29

3.2.2 Non-Functional Requirements 29

3.3 System Model and System Requirements 30

3.4 Feasibility Study 31

3.4.1 Selection of Technologies 32

3.4.2 Implementation of Simulation 32

3.4.3 Implementation of User Interface Controls 33

2

3.3.4 Implementation of Data System 33

3.5 Project Plan 34

3.5.1 Research and analysis 34

3.5.2 Outline Design 35

3.6 Test Plan 36

4. Design 38

4.1 Design Introduction 38

4.2 Technologies 38

4.2.1 Scene Structure 38

4.2.2 Object Structure 39

4.2.3 Engine Architecture 40

4.3 Preliminary Application Design 42

4.4 Feature Development Plan 47

4.4.1 Network Design 48

4.4.2 Modular Design 49

4.4.3 Gameplay and Mechanics Design 49

4.5 User Interface Design 51

5. Implementation 56

5.1 Components 56

5.1.1 Data Processes 56

5.2 Object Logic 62

5.2.1 Nodes and Paths 63

5.2.2 Planes 66

5.3 Game Logic 69

5.3.1 Sliding Panels 70

3

5.3.2 Input 72

5.3.4 Other UI elements 78

5.3.5 Game Manager and Scoring 79

5.3.6 Menus 80

5.3.7 Deployment 81

6. Testing 82

6.1 Introduction 82

6.2 Unit and Integration 82

6.3 System Testing 83

6.4 User Testing 85

7. Results and Analysis 87

7.1 Development Analysis 87

7.2 Ludic Simulation Analysis 87

8. Conclusion 89

9. References (APA) 90

10. Appendices 94

10.1 Appendix A 94

10.2 Appendix B 95

4

Declaration of Authorship

The incorporation of material without formal and proper acknowledgement (even with no
deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you
should document this in your submitted work and if you have any doubt as to what level
of discussion/collaboration is acceptable, you should consult your lecturer or the
Programme Chair.

WARNING: Take care when discarding program listings lest they be copied by some-
one else, which may well bring you under suspicion. Do not to leave copies of your own
files on a hard disk where they can be accessed by others. Be aware that removable
media, used to transfer work, may also be removed and/or copied by others if left
unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute
discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute.
Please refer to the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course
handbook. Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual assessment.
This would include jointly developed solutions as well as one individual giving a solution
to another who then makes some changes and hands it up as their own work.

Declaration

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own
work.

Signed: James Blair___

Date: 23/04/2021___

Failure to complete and submit this form may lead to an investigation into your work.

5

Abstract

Path following behaviour is an area of emerging significance in the field of computer
autonomy and, as such, this paper presents an exploration into its applications to real
world data through the development of an air traffic control simulation with Dublin
Airport’s arrival pattern as the accompanying data. The simulation is developed with the
utilisation of several key game development techniques and aims to explore the
underutilised potential of applications that exist in the narrow spectrum between game
and simulation.

The main body of the document is structured to begin with the performed research on the
relevant areas, followed by a study of the application’s feasibility and technological
requirements. The application’s design is then discussed to outline the initial plan for both
functionality and aesthetic. Finally, implementation and testing of the application is
explained.

The findings, as collected through testing of both the technology’s performance as well as
user performance, suggest that the applications in this space may benefit mutually from
aspects of both game and simulation and that the effectiveness of autonomous agency and
steering behaviours on fulfilling the goals of applications such as these is very significant.

6

Acknowledgements

I would like to express my deepest appreciation to my thesis supervisor John Montayne
who has, throughout every stage of this project, provided valuable insight. His passion for
aviation and deep understanding of user aware systems saved me from many pitfalls.
Without his constant encouragement to strive for better than I believed myself capable,
this project would not be what it eventually became.

I would also like to extend my gratitude to my second reader, Cyril Connoly, who
contributed meaningful direction to the project early in development.

Finally, I would like to thank my partner, Sarah Connaghan, without whose constant love,
support and academic guidance I could not have made it this far.

7

1. Introduction

In video games, it is often essential to navigate objects from one position to another. In
these scenarios, paths are typically calculated from one point to another using an
algorithm. Autonomous agents, those that may be affected by other forces while
attempting to navigate a path, can create challenges in requiring constant re-calculation of
the most suitable path to follow and, as such, are instead given behaviours that will
attempt to follow paths within their own unique physical constraints. The proposed
project attempts to develop an application which implements some of the described
behaviours (steering, pathfinding) on a set of real world data objects, in this case air
traffic control and node network positional data.

The application will also explore the validity of building simulation training tools
informed by design principles used in game development in order to improve
comprehension of complex systems like those used in air traffic control. In doing so the
project aims to demonstrate the benefits and limitations of programs that exist in this
space.

8

2. Research / Literature Review

In the development of an application which intends to simulate the behaviour and
movement of air traffic, it became evident that it was necessary to employ techniques to
handle each individual object’s means of navigation. ‘Motion planning’ or ‘path
planning’ are terms used to describe many methods by which agents may navigate their
environments and are frequently referred to in research surrounding video games,
robotics and autonomous vehicles. Most typically this can be described as moving an
object from a specific point in space to another. This, however, often presents many
challenges such as the object’s physical limitations or a change in the environment the
object intends to navigate. This research document intends to explore with the aim of
uncovering the most effective possible motion planning solutions with regards
computation speed and processing efficiency for the specific use case presented by the
application.

The use case presented by the air traffic control simulation can be broken down as
follows: The environment will contain no obstacles as it simulates an air space, the
environment will contain a series of nodes which will be key points of navigation, there
will be a multitude of objects in the environment at once requiring real time pathing
information, the objects must not be permitted to collide with one another. To understand
the most effective means of moving objects in this environment, this thesis will examine
solutions presented in works outlining path finding and path following behaviour as well
as determining the most effective means of translating rules of an air traffic system by
means of gamification to a digital environment.

2.1 Pathfinding Algorithms

Within motion planning, a common sub category includes the concepts of ‘path finding’
which usually describes the means of calculating the shortest path between two points in
an environment containing obstacles. There are a variety of path finding algorithms each
with strengths and weaknesses pertaining to their processing efficiency and the type of
environment they are being applied to. The algorithms A* is the most commonly
represented as this provides the optimal solution for path finding when compared to other
search algorithms (Zafar, A., Agrawal, K. K., & Anil Kumar, Wg. C. (2018)) and as such
the literature examined to determine its effectiveness are comparative of this algorithm

9

and others such as Djikstra, Breadth-First Search (BFS), Depth-First Search (DFS) and
Best-First Search.

In Permana, Bintoro, Arifitama, & Syahputra (2018). ‘Comparative Analysis of
Pathfinding Algorithms A *, Dijkstra, and BFS on Maze Runner Game’ a test is carried
out in order to evaluate users' performance within a game ‘Maze Runner’ in which the
player attempts to compete with an object which is attempting to navigate an
environment using a pathfinding algorithm. The players place blocks which attempt to
intercept the current path and force the object to recalculate.

The objective as stated for this research was to determine the shortest and most efficient
route search. To accomplish this three levels were played by each researcher with each
level containing a different algorithm, these being A*, Djikstra and BFS. This was
repeated three times with an increasing level of complexity added in each iteration. The
data recorded included processing efficiency, computation speed and number of steps
taken.

Figure.1 Pathfinding of Maze Runner Game at Level 1 using A* (a), Djikstra (b), and
BFS (c) algorithms - (Source: Permana, Bintoro, Arifitama, & Syahputra, 2018)

From the computation results presented in figure.1 it is evident that the A* algorithm
appears to be acting more efficiently as the method by which it searches the environments
nodes reduces the quantity of iterations required. The results however determined that it
calculated in this test at a slower speed than Djikstra’s algorithm despite this algorithm
checking every node in the environment as opposed to A* which only checked

10

approximately 50%. It is not until the environment becomes more complex in later tests
that the A* algorithm manages to perform faster. In all cases however the BFS algorithm
is less efficient.

Harika Reddy’s PATH FINDING - Dijkstra's and A* Algorithm’s takes a narrower
approach to the subject matter by analysing just two of the algorithms utilized in the
previous paper. From the results demonstrating the seeming redundancy of BFS in the
comparative research carried out, it is apparent that this is appropriate. In this paper the
author goes into greater detail regarding the history and inner functionality of these
algorithms. The goal of this research appears to be a breakdown and comparison of the
uses and pitfalls of each algorithm however no specific testing is performed in order to
demonstrate this.

Reddy is able to convey that the Djikstra’s algorithm uses a ‘greedy’ in that it repeatedly
selects unselected vertices (or nodes) nearest to the starting location until it finds the
shortest distance to the target. Using Big-O notation Reddy evaluates the efficiency of the
algorithm and is able to determine its pitfalls. The issues with this algorithm lie in it’s
inefficiency of direction. The algorithm attempts to find the target without eliminating
unlikely directions and with a limited view of only its current node’s nearest neighbours,
thus resulting in a far higher number of checks to return a result. Reddy describes this as
a blind search which she concludes consumes necessary resources and wastes time.
(Reddy, H 2013 p.9)

Taking a similar detailed approach to the A* algorithm, it is then outlined that the
structure by which A* operates is that “As A* traverses the graph, it follows a path of the
lowest known heuristic cost” (Reddy, H 2013 p.7). This is similar to the operation of the
Djikstra’s algorithm however A* benefits from ensuring it does not re-test nodes that
have already been travelled upon.

The only notable pitfall pointed out in this paper of the A* algorithm is the necessity of
having access to the entire grid of traversable nodes before beginning the calculation.
This can cause complications when the quantity of agents attempting to navigate
increases as the computational burden grows exponentially with each iteration.

11

The first paper manages to demonstrate this through a testing method which provides a
tangible quantitative result while Reddy’s paper tends to discuss more in depth how the
algorithms work in a more literal sense using pseudo code examples and historical
background as a basis for explanation. Reddy’s paper could be seen as more accessible
due to the nature of the language used but is less equipped than Permana’s paper in
delivering information which facilitates decision making for readers who may be
developing an application.

From both of these papers it is apparent that the consensus is that in most practical cases
A* is the preferred algorithm however there exist niche cases where the Djikstra’s
algorithm may be preferred, specifically cases with very large spaces and very few
obstacles. It is possible that the proposed application using an open space to simulate air
traffic may be a niche case which may benefit from using Djikstra’s algorithm; however
the method of implementation of the nodes representing the air transport network will
determine whether or not this is the case.

2.1.2 Path Smoothing

In order to more closely emulate the movement of the objects proposed in the application,
aeroplanes, it is essential that the objects move according to the limitations of these
vehicles. To this avail a common solution to the paths generated by grid based
pathfinding algorithms pixilation is to smooth the resultant paths prior to applying them
to the object in the environment.

The Open Source Software (OSS) project: PythonRobotics is a collection of robotics
algorithms implemented in the Python programming language. The focus of the project is
on autonomous navigation, and the goal is for beginners in robotics to understand the
basic ideas behind each algorithm” (Sakai, et al., 2018). While this project explores many
solutions to motion planning as a whole, it moves past traditional pathfinding methods
and explores the generation of curves by means of the generation of splines and bezier
curves in particular making reference of ‘A comparison study on path smoothing
algorithms for laser robot navigated mobile robot path planning in intelligent
space’(Zhao, et al., 2011). This approach sits in contrast to the approaches outlined in
‘Game Path Planning’ (Ceipek, 2010) which examines a method of path smoothing
typically used in video games and robotics which involves the conversion of an

12

environment into graphs of nodes and generating paths between these nodes in fewer, and
smoother patterns.

Figure.2 B-Spline Planning PythonRobotics. (Source: Sakai, et al., 2018)

In Song, Tien and Zhao’s research an explanation into the mathematics and functionality
of several parametric curves is presented including Hermite interpolation, Cubic spline,
Bezier curve and B-Spline. The purpose of which is to compare their performance under
a single specific laboratory map and to select a path planning technique for use with a
mobile robot in this environment. The paths generated for the purpose of smoothing using
these curves is Djikstra’s algorithm and a Voronoi diagram. While they are able to
determine that for the purposes of their implementation the bezier curve presented the
most efficient path, it is possible that the proposed airspace environment that skipping
arriving at certain nodes could result in a greater risk of congestion and therefore may not
be the most effective curve for this case.

13

Figure 3. Left: Parametric Curve planning vs Right: Bezier Curve Planning (Source:
Zhao, et al., 2011)

The approach taken by Ceipek in his more causally presented article on game path
planning discusses the use of navigation meshes (Nav Mesh) in video games to create
more efficient paths and a means of iterating further upon this strategy using the ‘funnel’
algorithm. Ceipek presents his work as a tutorial, describing the construction of the nav
mesh as a graph of weighted nodes identical to descriptions used prior in this paper
describing heuristic weighting in path finding algorithms.

Ceipek presents that the common use of nav meshes is often used to navigate objects
between points but that this methodology is flawed. “Waypoint representations of space
are easy to create and think about, but they are not very good for pathfinding. Although
they use very little memory, they result in inefficient, unrealistic paths.”(Ceipek, 2011).
The article then demonstrates the use of A* to calculate the shortest path between two
points on a nav mesh. Following this an implementation of the funnel algorithm as
outlined in ‘If you never fall, you are not really trying’ (Jon, 2006 p.52), is implemented.
This involves triangulating points along the path and determining the shortest path along
the points of these triangles and then examining the triangles cross product to determine
the order of the steps along these points.

14

http://www.ai-blog.net/archives/000152.html

Figure.4 In Black: Nav Mesh, In Red: Proposed path using funnel algorithm (Source:
Zhao, et al., 2011)

Although the resultant paths presented by this method are not curved it is possible this
could be improved upon by calculating a larger sample of control points. In the
application proposed for air traffic control simulation it may be necessary to implement a
combination of these methods and perform testing to determine the best method.

While the subject matter of path smoothing is one for which there are many solutions it is
evident that the use case scenario for each implementation will dictate not only which
types of paths will be most efficient but even what may be feasible from a computational
standpoint.

2.2 Path Following

Regardless of the methods used to generate paths for objects in a simulation environment
or video game, it is often necessary to allow the objects to handle a quantity of the
processing burden by allowing the objects to do more than simply move a specific
number of steps along the path with each iteration. Instead, it is proposed by Craig
Reynolds in his work in ‘Steering Behavior for Autonomous Characters’(1999) and

15

iterated further upon in ‘Autonomous Behaviors for Interactive Vehicle Animations’(Go,
et al., 2004) that objects in a simulation space (‘Agents’) may instead be given some
degree of agency over how they can follow a path. This behaviour, entailing steering,
seeking, arriving, evading and queuing among others allows agents, particularly in
environments containing multiple agents, to attempt to produce more realistic simulations
by interacting more dynamically with one another and the environment. Reynolds
describes this behaviour as navigating around their “world in a life-like and
improvisational manner”.

Figure.5 Example of path following behaviour of autonomous characters along a curved
path (Source: Reynolds, 1999)

Reynolds’ paper discussed the levels of motion behaviour of autonomous characters in
animation and video games. It defined these three levels of motion behaviour in a
hierarchy as ‘Action Selection (strategy, goals, planning) Steering (path determination),
Locomotion (animation, articulation)’ (Reynolds, 1999). Reynold’s paper presents
definitions of terms and a limited literature review on related works. The most useful
information contained was in relation to the structure he outlines for core principles of
what defines steering behaviour. In particular his final section on the topic of combining
behaviours. This section explains the means by which autonomous objects can be offered

16

a low level decision making process to determine which behaviours to prioritize, and to
what degree, based on external factors and neighbours as opposed to sequentially
switching between different behaviours.

In ‘Autonomous Behaviors for Interactive Vehicle Animations’(Go, et al., 2004) an
adaptation of Reynolds’ work to allow for vehicles with further, more complex
movement behaviours in both two dimensional and three dimensional space. The primary
method presented by the article to achieve this goal of extending Reynolds’ model is to
combine the behaviours with “with online path planning techniques to yield more
visually realistic synthesized vehicle animations.”(Go, et al., 2004). The primary benefit
of the improvements made to the previous model of steering behaviour is in the
development of a control model in which a calculation of a fixed number of trajectories
based on the specific parameters of the vehicle is made. The paper outlines a method by
which a vehicle with limited controls can have many of its current, most likely
trajectories mapped ‘offline’ before initializing the simulation for later use during
‘online’ simulation.

Figure.6 Trajectory traces for an autonomous animated spacecraft in 2D with only yaw
control inputs. 6 different values for controls (Source: Go, Vu, & Kuffner, 2004)

This work by Go, Vu and Kuffner presents a solution to broaden the applications of
steering behaviours by the use of this trajectory pre-calculation and further enables its use
by demonstrating how it can be used to combine behaviours for collision avoidance by
sampling large quantities of paths at once using three different methods. These methods
allow for varying quantities of accuracy however certain iterations can result in large
amounts of memory usage depending on the vehicle in question and the variability of its
possible movements.

17

Figure.7 From left to Right: Single step sampling, uniform sampling and adaptive
sampling (Source: Go, Vu, & Kuffner, 2004)

Limitations of Reynolds’ paper were in the shallow depth it went into terms, however the
work presented in the paper is reinforced by numerous demonstrations of each
behaviour’s functionality on his website (Reynolds, 2004). The article is also perhaps
limited by its age. The demonstration of potential improvements to this concept provided
in ‘Autonomous Behaviors for Interactive Vehicle Animations’(Go, et al., 2004) only five
years following its publishing highlights the possibility that many such improvements in
this area may be present today. Go, Vu and Kuffner’s solution provides additional areas
of application for the strong basic model laid out by Reynolds however it is pointed out in
their article that the solution presented contains several issues, most notably the
generation of what the authors call ‘path aliasing’ which is the inability of the presented
solution to provide straight paths due to constant recalculations of the next trajectory. The
article itself, though, provides significant depth and context for the discussed subject
matter and is able to convey its thesis effectively as a result.

The applications of the presented concepts of these papers to the proposed air traffic
control application are numerous. Allowing vehicles in the simulation to move
autonomously presents the opportunity to reduce the necessary complexity of the path
finding algorithm which, in real time simulation, may be necessary to produce an
application which can dynamically change due to user input. Specifically the behaviours
governing collision avoidance, path following and queuing may provide particular
relevance to the simulation of a congested airspace. The additional models outlined in

18

Go, Vu and Kuffner’s work also presents interesting possibilities to this application. Due
to the focus of their work seeming to be in the enabling of particularly complex vehicles,
it is still undetermined if the aeroplanes modelled in the application will benefit from this
degree of trajectory pre-sampling.

2.3 Simulation and Gamification of Rules

When creating a simulation of a real world environment whether for the intent of analysis
or entertainment it is usually pertinent to closely examine the rules governing this
environment in reality and to replicate them to as close a margin as is feasible. It is
inevitable however that at certain points in this process it will be necessary to disregard
or simplify certain variables that are either too complex or too random to predict.
Furthermore in the development of video games, the factor which drives these decisions
is often alternatively founded in whether the simulated variable contributes to the
enjoyment or immersion of the user instead. In addition to the emulation of specific
factors there is also consideration given to the intent of a piece of software. This being
whether the software is intended as a purely entertainment based product or as a tool for
creation or training. To this effect this section will examine the work of Brock Dubbels In
his paper titled ‘Gamification, Serious Games, Ludic Simulation, and other Contentious
Categories’ (2013) in which a framework is employed to further understand this process.
This will be compared to the work of James R. Parker and Katrin Becker titled ‘The
Simulation–Game Controversy: What is a Ludic Simulation?’(2014) which, attempts to
alternatively more closely explore the concept of ludic simulation and the relationship
between work and play within the scope of software applications.

Dubbels’ paper is divided into two distinct sections. The first outlines the design of a
conceptual framework he titles the spectrum of gamification, by which software can be
categorized on the spectrum of game and simulation through many factors, these being
work vs play, consequence vs ambiguity, mimesis vs diegesis and narrative vs story.
Dubbels outlines an area within the three axes which determines games. The second
section of this paper makes use of this framework to perform “feature analysis of
traditional categories known as models, simulations, and games to compare with hybrid
categories known as ludic simulations, gamification, and serious games”(Dubbels ,
2013).

19

Figure.8 Gamification Spectrum with Examples (Source: Dubbels , 2013)

In figure.8 examples of Dubbels categorization of notable games and tools can be seen to
demonstrate the use of this system. Despite clear outlines provided in the paper for the
descriptions of each category and the reasoning for the placement of many of the
examples provided, the framework has no means by which a checklist is used to quantify
exactly where a subject may be placed and is therefore mostly a means of approximation.
The descriptions regarding these reasonings for categorisation are perhaps the most
beneficial section of the paper as they provide a means of distinguishing key differences
in games, simulations and tools. This can be observed in Dubbels’ discussion of RAC’s
(Reward-Action Contingencies) which are the means by which games “provide clear
signals that increase the player’s sense of empowerment, knowledge, control and
potential”(Dubbels , 2013). This is something that most tools, training and even
simulations do not provide within the software, often opting alternatively to provide
context through the use of external training literature or documentation.

Parker and Becker’s work takes a similar approach in outlining the understood definition
of, in particular, games and simulations. Following these initial brief explanations the

20

article moves to examine the relationship between the two, coming eventually to the
statement that “ games are simulations but not all simulations are games.”(Parker &
Becker, 2014). This is particularly significant as the paper moves closer to describing the
thesis’ question regarding ludic simulation, they are able to outline that the only core
difference between the game and simulations is the presence of a goal. That a simulation
may have graphics, sound, interactivity or even a game-like scoring mechanism does not
define it as a game unless there is a central goal to the purpose of the user’s interaction.

Figure.9 Relationship between games and various types of simulations (Source: Parker &
Becker, 2014)

Parker and Becker conclude that “The lack of a clear delineation between levels of the
hierarchy must not be allowed to impact design, development, or analysis of
simulations”(2014). They describe that the two closely related topics can benefit greatly
from one another through use of the strengths of each.

Dubbel’s paper provides a valuable context to understand means of classifying software
and the most commonly observed identifiers of these categories. This is achieved through
use of accessible language and relevant examples however the paper is perhaps limited
by the vagueness of its intent. While the framework provided offers a solution to

21

understanding existing software it does much less so to help determine choices a designer
may take to insert their own project into this spectrum nor to provide a reason to do so. In
contrast Parker & Becker are able to deconstruct the definitions in a way which allows
these sorts of evaluations to be made. They place more emphasis on the strengths and
weaknesses of both games and simulations and how the design and development of each
may be bolstered through comprehension of their definitions.

This area of study is one that is of particular relevance to the proposed air traffic control
simulation as at this stage in the design, the degree to which gamified elements will be
included is still vague. Including systems by which there is a progressive introduction of
more complex features of the application over time to the player can only serve to
enhance the user experience however requires a more modular approach to the
component design of the application, with each instance of functionality having the
capacity to be either automated or user controlled.

2.4 Summary of Literature Review

This literature review has examined principles surrounding the key technological area the
proposed project intends to implement in the form of both path finding and path
following. From research into these topics the review was able to determine that it is
essential to fully factor the use case and perform a variety of tests to determine the most
efficient method of motion planning for a given project. It also revealed that motion
planning can be a somewhat layered approach, with each technique adding additional
quantities of efficiency, definition or sampling to existing calculated paths. Finally, from
this research it became evident the importance of understanding the intent of a simulated
piece of software with regards to gamification and user experience. These factors as
explored in the previous chapter unveiled the significance of identifying where on the
spectrum of game to simulation the proposed project will fall.

22

3. Feasibility Study & Requirements

3.1 Requirements Analysis

The initial process undertaken to plan and prepare the relevant research for the was the
undertaking of a requirements and feasibility study. This process involves the collection
of a broad range of relevant information for the planned project as well as demographic
analysis and risk assessment. It is the objective of this study to create a clearer set of short
term goals for the project and lay a foundation for the plan in terms of both design and
implementation.

3.1.1 Existing applications

The model of steering and following behaviour often used or replicated in game
development is perhaps best represented in Craig Reynolds work on flocking and
avoidance behaviour. In particular his C++ library OpenSteer for autonomous characters
in video games and animations which was developed with assistance from Sony
Computer Entertainment of America. This library allows game developers to prototype,
visualize and annotate steering behaviours during game development with the intention
of then being reconstructed in the developer's native game engine.

The application which this project intends to develop presents a complete environment
that informs its own behaviours independent of a separate library as well as the
simulation of air traffic in real time. While OpenSteer is a tool which enables developers
to create behaviours similar to the behaviours this project aims to develop, this project's
goals are conversely in the analysis of the effectiveness of the technique of utilizing
steering behaviours for the specific use case of air traffic control simulation.

23

Figure.10 - Steering Behaviors for Autonomous Characters Example (Source: Reynolds,
1999)

With regards to the game and simulation space the application will occupy, it can be
compared to similar gamified air traffic control applications such as Global ATC
Simulator (Global ATC Simulator, n.d.). While many examples of such games exist, they
often do not provide real traversal information of the vehicles, opting instead to update
the positions by a fixed amount over time. The proposed application would also include
features such as the capacity to create new air spaces from correctly formatted data and as
such presents a much more significant capacity for scalability.

24

Figure.11 Global ATC Simulator, (Source: Global ATC Simulator, n.d.)

Professional, non-commercially available systems used in actual air traffic control such
as the proposed solution by WEYTEC pictured in fig.3 are immensely complex and
require several years of training to effectively operate. The application attempts to present
a much more accessible system which can be adjusted to in a much shorter period of time
through the use of gamification albeit with less depth with regards to micro-mechanics
handled in these sorts of systems.

Figure.12 WEYTEC proposed application based ATC solution (Source: Greenky, 2019)

25

3.1.2 User Profile

The typical user of this application is an aviation hobbyist wishing to gain an entry level
perspective of air traffic control systems. The reason such a person may seek out this
program over others is the proposed high level of accessibility due to presentation using
game systems as well as the capacity to have specific air spaces included through its
modular design. This user is typically in search of a tool which will enable them to gain a
greater understanding of a complex subject and as such their likely desires have been
outlined:

● A User Interface that is easy to navigate and comprehend

● An application which is clear in its presentation of information and the
significance of that information.

● An application which has familiar air spaces

● An application that is potentially enjoyable to use.

3.1.3 Personas

The creation of user personas documents was carried out in order to establish a clear
picture of the user profile. It was in creating these that specific wants of these fictional
individuals which had, of yet, not been considered in the development plan, would
become apparent.

26

Figure.13 Jane Doe Persona - Developer

27

Figure.14 Sarah Walsh Persona - Student

28

3.2 Requirement Modelling

3.2.1 Functional Requirements

The System must:

● Display clear user interface elements

● Train the user to use the program

● Receive data from a data source

● Visually communicate through use of shape and colour the motion of the vehicles

3.2.2 Non-Functional Requirements

The System must be:

● Efficient and effective in its execution of code multiple object interaction

● Highly useable and responsive to user input

● Able to support a variety of user experience levels meaningfully

Use Case 1 : Training

Primary Actor: User (Aviation Hobbyist)

Success Scenario:

1. Actor open application

2. Actor Selects training program

3. Actor completes program and proceeds to data driven model

4. System records progress through scoring mechanics

5. Actor plays until failure

6. System displays performance

Extensions:

2.a Actor plays through each of the three training scenarios

5.a System scales difficulty of game until failure

29

Use Case 2 : Only Game

Primary Actor: User (Game Enthuthiast)

Success Scenario:

1. Actor open application

2. Actor omits completion of training and heads straight to full game scenario

3. Actor likely fails sooner than expected due to not being proficient

4. Actor retries until satisfied

Extensions:

4.a Alternatively actor quits due to dissatisfaction

It is evident from this example that the second user profile, the game enthusiast is less
likely to have their needs met by the application if they decide not to engage in the
training program. This may be addressed by making the user interface as intuitive as
possible.

3.3 System Model and System Requirements

The systems involved in the construction of the application are broken down into the
following:

● The Simulation system

○ Game Movement and Behaviors

○ Path Following and Game Logic

● The Data system

○ Pulls Data from user json

○ Informs object positions

● The UI System

○ Receives and interprets user input

○ Displays changes on screen

30

These systems will work in conjunction with one another to deliver the full application. A
diagram of this workflow as a user interacts with it can be seen in Fig 3.0.

Figure.15 Sample System Model

3.4 Feasibility Study

In order to establish the risks associated with implementing the proposed project a
feasibility study was carried out. This allowed technical and project management issues
to be identified and the solutions to these obstacles to be outlined prior to their arising.

31

Sequential Project Completion Events:

1. Selection of technologies
2. Implementation of simulation
3. Implementation of User Interface Controls
4. Implementation of position data system

3.4.1 Selection of Technologies

This stage involves the assessment of benefits and downsides to the available
technologies with which the project could be implemented.

Potential Challenges:

● The software may have limitations as of yet unidentified until later on in the
development cycle.

● The software may have compatibility issues with target platforms or other
technologies the project intends to use in conjunction.

Potential Solutions:

● Predetermine the core functions of the minimum viable product and ensure that
selected technologies have the capability to deliver these.

● Test the intended functionality on a small scale or find examples of successful
existing projects which use both technologies.

In the case of this project the selection of technologies for a javascript library has been an
important factor to consider. P5.js and D3.js present similar solutions to simulating visual
data with the latter putting a stronger emphasis on data and the former on design.
Alternatively game engines may provide a more complete and robust set of tools with the
drawback of a potential reduction of control in certain areas.

3.4.2 Implementation of Simulation

This stage involves the implementation of the main body of the functionality of the
project. This being the movements of planes in a flight path network.

Potential Challenges:

32

● Development of class and object structure needs to be highly robust as it will
require all objects to have access to all other objects at all times.

● Solutions need to be highly efficient as multiple calls may be made for many
objects each frame.

Potential Solutions:

● Explore viability of solutions to this such as a hierarchy and script execution
order.

● Move as much code as possible to single scripts not being called per object.

The simulation component of the application is the most significant as regards
functionality and as such, will require the best solutions to be selected for issues that may
arise.

3.4.3 Implementation of User Interface Controls

This stage describes the user input handling and processing as well as the layout and
functionality regarding user interface elements.

Potential Challenges:

● User interface requires large number of different items reducing comprehension

● Inputs are registered slowly due to underperforming code

Potential Solutions:

● Explore options for grouping or combining UI elements in order to keep the
screen clear of clutter.

● Create exceptions for user inputs which are processed with priority.

The user interface represents the most relevant component of the project for
comprehension by the user and as such should be at the forefront of consideration when
implementing any feature throughout development.

3.3.4 Implementation of Data System

This stage refers to the acquisition and implementation of a data resource to inform
locations in the simulation environment.

33

Potential Challenges:

● Format of selected data requires translation to usable state.

● Environment scale and size needs to be mapped to match latitude and longitude
data

Potential Solutions:

● Find resources for converting data to the desired format and confirm compatibility

● Investigate projection mapping options such as mercator projections

The .json file type is the likely desired format for the final data although it is unlikely
such a resource in this format already exists and as such it is likely that a process will
need to be undertaken in order to address this.

3.5 Project Plan

3.5.1 Research and analysis

In order to assess the topics for the previously included research component of the
project, a list of short form topics were researched to determine the likeliest candidates
for full research and analysis. For each of the sections outlined above the following topics
were researched:

Technology research: Pathfinding research:

● P5.js

● D3.js

● jquery

● React

● Unity

● BFS

● DFS

● Djikstra

● A*

● Multi-Agent Pathfinding

○ M*

○ CBS

● Game Implementations

○ Standard grid

34

○ Visibility Graph

○ Navigation Mesh

○ Path smoothing
using string pulling
and funnel
algorithm

Following and Steering

Behaviour research:

Javascript Web Application

Research:

● Autonomous Agents

○ Rule trees

○ AI

● Methods of Navigation

● Methods of Avoidance

○ Speed adjustment
vs Path adjustment

● Simulating real world
factors such as ATC rules

○ ATFM - Flow

○ ATC - Separation

● Canvas Limitations

● Physics handling

The preliminary research that enabled the project conception involved determining
sources of information for the above areas of study and confirming the viability of
utilising that information.

3.5.2 Outline Design

The application will initiate with an option to select if the user would like to run the
training program or a mode called endless. If they select the training program they will be
taken through three consecutive scenes each describing the fundamentals of how to use

35

the application. The endless mode will be a program which simulates air traffic using data
for Dublin airport’s arrival pattern.

Training stage one will address the holding and landing component of the controls, with
users simply needing to organize the order the planes land in.

Training stage two is the steering and navigation component with users being required to
move the camera and give planes directions.

Training stage three explains the scoring system with users needing to adjust speed and
altitude to gain points.

The endless mode combines all of these things in a real world scenario and will continue
indefinitely until the user fails due to a plane colliding with another. The application will
increase the rate that planes appear to be landed throughout to scale the difficulty of the
simulation. Once completed this will then present a score to the user based on their
performance.

3.6 Test Plan

In order to facilitate the mitigation of errors while progressing from each project stage to
the next, a test plan has been created and will be followed throughout the development
process. The test plan follows the standardized method as outlined in Fig 16.

36

Figure.16 Test Plan Model (Source: Software Testing Levels, 2011)

Testing will begin with unit testing which concerns the smallest testable components of
the project. This may refer to specific objects or javascript functions which will likely be
the smallest unit of software included in the project. The unit testing will be executed by
implementing the white box testing method which is done by supply the test unit with
valid and invalid inputs and observing if the outputs as anticipated.

Figure.17 White Box Testing (Source: Software Testing Levels, 2011)

Following unit testing, integration testing will be performed. This is when the tested
functional units will be executed in combination to determine if the desired outcome is
being produced under more elaborate conditions. The method for testing integration will
be grey box testing which is when the internal structure of the test unit is partially known.
In this project integration testing will be performed on entire scripts to determine that the
internal functions are executing successfully.

System testing is then initiated to determine the integrated system meets the requirements
specified. This is carried out manually by performing black box testing, in which the
internal structure of the integrated system is unknown.

37

4. Design

4.1 Design Introduction

The application for this project is a ludic simulation for air traffic control. In order to
demonstrate the processes involved in the design of this system, this document will
outline the core elements of that design. These design elements are broken down into
program design, being the design of the system and functionality of the application, game
design, which entails the process of designing gamified elements and training systems
and finally user interface design which explains the process of designing the interactable
and visual elements present in the project the user is expected to interact with. As each
design phase relies on a comprehension of the technologies present in the application and
as such this document will first outline the general workflow and pertinent features of the
unity game engine.

4.2 Technologies

The Unity game engine is the primary focus of the technologies present in this project
and as such this chapter will outline the structure and workflow of this development
environment and its tools as they relate to the project. The IDE used in conjunction with
this engine is Microsoft Visual Studio Code.

The project also relies on the use of an online repository for version control. To this end
Github is being utilized to facilitate reliable access to older versions of the software in the
event of technical issues occuring.

Finally the website ‘trello’ allows the project to succinctly manage task status and
organise the workflow that should be undertaken by establishing a system of task priority
and time management.

4.2.1 Scene Structure

A scene in unity is a specific configuration of asset positions and properties in a space.
Scenes can be loaded and unloaded during runtime to enable access to widely varying
situations for users. Within a scene will be a hierarchy of the objects the developer has
placed or instantiated from their assets folder.

38

Figure.18 Unity folder structure

Each object in the hierarchy has been placed into the scene environment while the project
folders contain the available assets the application may access during runtime via code.
The blue objects are instances of prefabs which are comparable to objects of a class while
the grey boxes denote objects that are unique single instances. In this structure it can be
observed that the ‘Paths’ and ‘Planes’ GameObjects have been used as containers to hold
multiple other objects so that they may be accessed more effectively using code.

Another common practice in the design of unity scenes present here is the ‘Canvas’
which contains all of the necessary UI elements in a scene and a ‘Controller’ object
which holds a script which acts as a mid-point to other scripts wishing to access variables
in foreign objects and a camera which determines the viewpoint the user will see when
loading the application.

This structure is common to most Unity projects and enables a consistent reliable access
to the information as well as a fast and effective means of testing functionality in a
variety of possible situations.

4.2.2 Object Structure

An object in unity refers to an instance of a unity class called a GameObject and upon
initial creation will contain just one component being a ‘Transform’ which determines its
position in three dimensional space. A game object may be given a tag so that it can be

39

more easily located via code without needing to find it by its name and may also be given
a layer to determine which group of objects it is permitted to interact with.

Figure.19 Unity GameObject Inspector with Transform Component

A GameObject may have any number of Unity’s components attached to it. There are a
large number of components which serve many purposes such as a ‘rigidbody’
component which allows physics forces such as gravity to affect the object or a ‘collider’
component which allows collisions with other objects to be tracked. These components
can also be scripts written by the developer which may be configured to enable any
desired form of interaction.

4.2.3 Engine Architecture

The unity engine compiles an application in a predetermined sequence which can only be
modified by the user at the highest level. The user defined components and scripts can be
sequenced by the user in any desired order however the structure of scene to GameObject
to components is essential.

40

Figure.20 Unity Execution Priority (Source: Unity Technologies, n.d.)

In the below example, I have determined that the bezier script must execute 100ms before
the path script on each frame. This is necessary because the path script depends on certain
variables being established/updated in the bezier script. The other present items in
execution order regard the UI system which performs more effectively when initialized
before runtime.

Figure.21 Unity Execution Order Editor

41

Making use of all of the above systems the application is able to be designed to make use
of a structure and sequence for every component of the application with complete control.

4.3 Preliminary Application Design

In order to develop an initial design structure for the application system several diagrams
were established to create a basic idea of the components that would interact in order to
accomplish the application’s goals.

Figure.22 Path Structure Class Diagram

The first component designed to lay the foundation was the system of nodes and paths
which would allow the agents to navigate logically within the environment. These nodes
will make use of unity’s scene hierarchy in order to lay out the sequence in which they
should be navigated. Following this it was necessary to verify the integrity of some of the
key formulae that would power the more complex components of the system’s operation.

42

In the following example an early iteration of the DeCastell algorithm was established in
pseudocode.

Figure.23 Early example of pseudocode for curve algorithm

During the development of this algorithm and it’s conversion to C# it was important to
understand which aspects of this code would need to be interacted with beyond the initial
generation of the curve. Having control over the positions of control points in order to
create primary nodes which would handle arrival time logic as well as curve resolution so
as not to overburden the application with too many nodes were key considerations in the
design.

43

Figure.24 Plane and Node System Flow Chart

The above flowchart outlines the basic structure of behaviours for objects of the two
primary classes: nodes and planes. The flowchart demonstrates how they will make use
of the scene hierarchy to assign a sequence of nodes which are parented to path segments
which themselves are parented to paths. This design allows planes to navigate through the
variety of non grid-structured nodes in the correct order without over reliance on
pathfinding calculations. This sequence of logic will be executed independently by each
plane in the scene simultaneously. The reasoning for a system whereby each plane is able
to, without reliance on information from a central system, decide where it should go next

44

is that it is an important foundation for developing more complex decision making
processes for these agents.

Figure.25 Generic Intelligent Agent Behaviour Flowchart (Source: Russell & Norvig,
2010)

The plane's structure of operation relies on inputs from the environment at each decision
making stage. This structure is central to the concept of an intelligent agent and allows
the object to perceive factors which lead to a variety of action taking results as outlined in
the above.

45

Figure.26 Plane Agent Behavior Flowchart

From this next flowchart it can be observed that the plane will act to perceive specific
environmental factors then choose from an array of actions. For reference a ‘neighbour’
in this case refers to other planes than this specific agent. This example includes an evade
action which would select one of two vehicles in a conflict and alter its course. The
adjusted speed action would slow or speed up one or both vehicles to prevent an evasion
action needing to be taken. As these features are implemented upon it may be necessary
to add additional actions to this system however the structure relying on perception and
action and the systems which enable this are firmly established here.

46

4.4 Feature Development Plan

Initially the design for this project was sequenced to include the core elements which
would enable a testing environment for the development process. These core objects are
as follows:

● Aircraft

○ Moves forward towards assigned target

○ Components:

■ Rigidbody

■ Script

■ Collider

■ Renderer

● Node

○ Has an ID which denotes its sequence in a series of nodes

○ Draws lines between neighbours in sequence

○ Components:

■ Script

■ Collider

■ Renderer

■ Line Renderer

● Landing Node

○ System by which planes and nodes can be flagged to change behaviour if
approved to land

● Curves and Paths

○ Adjustable curve which creates a series of nodes along its body

○ Path object which connects these sections of nodes as desired

47

Each of these elements will be stored as a prefab within the unity engine structure and
instantiated into scenes using code. The majority of functionality the application will
depend on is structured around the relationships between these objects and as such it has
been determined essential that this element is fully functional prior to development on
subsequent features. These objects and the systems which enable their functionality is the
first phase of development.

The next set of features include the remaining core functionality for a minimum viable
product which meets the acceptable goals the project intends to meet.

These are as follows:

● Data Integration

○ Pulls longitude and latitude data for flight paths from a .json resource

○ Converts these values to a relative transform in the environment

○ Populates the positions with paths

● Advanced Aircraft Behaviour

○ Evasion of other planes through system of desired vs actual

○ Adjustment of arrival time at nodes via node logic

● User Interface Implementation

By clearly defining the priority of tasks and breaking them down further into subtasks the
project aims to be succinct in defining the scope of features that are achievable within the
timeframe.

4.4.1 Network Design

The networking component of the project makes use of a file system to return relevant
information in the ‘.JSON’ file format to allow for effective implementation in the game
engine. In order to interpret .JSON files in the appropriate format the application will be
utilising a plugin called simpleJSON (SimpleJSON - Unify Community Wiki, n.d.) which
allows for effective parsing and building of JSON files.

Using this framework the project will create serialized objects from the data and enable
the design of various features of the application to be informed by tangible data.

48

4.4.2 Modular Design

In order to facilitate the training system not requiring bespoke code, it is essential that
each feature added to the functionality of the application be entirely modular. This will
mean that the feature can be enabled or automated based on the particular scenario or
user settings.

An example of this type of design could be observed in the intended implementation of a
difficulty setting. Depending on this state the method governing whether the agents will
automatically adjust their speed to avoid collision or simply ignore this functionality
would need to be accounted for in the design.

Rather than registering these states in simple boolean variables, however, it will be more
efficient to have a central data center in the form of an interface containing all of the
player settings and for each feature to have access to this data to determine how to
execute their functionality. This game data will also be saved locally using a generic file
path which Unity can access on subsequent launches of the game to recall previous user
settings.

The challenge with this design structure however will be in maintaining a non-reliance on
specific functionality which may or may not be currently active for static features. For
example the user interface will need to adjust which interactable elements are displayed
based on which states are active and may also be required to hide default elements which
have no relevance such as a ‘land plane’ button if the planes are currently being manually
adjusted and landed.

4.4.3 Gameplay and Mechanics Design

This game intends to strike a balance between actual simulation and a video game with
varying challenges. As a result the mechanics need to engage players more actively than
typical ATC simulation and dually serve the purpose of training the user gradually. In
order to outline the design process this implies a list of the actions the user can and
should perform has been outlined:

● Plane Selection

○ Select a plane to see a UI hover over it

49

○ Select between adjust speed or Change Path

● Path Selection

○ After selecting change path a visualisation of all available paths will stem
from that plane

○ Hovering over a selected path will highlight it

○ Once selected a the plane will then attempt to change to that path

● Vehicle Class

○ Different planes will adjust to follow paths at varying speeds

○ Identifying the vehicle type and understanding how maneuverable it is will
be essential to success

● Landing

○ A plane’s probability to land successfully will be larger dictated by how
long the plane was able to descend in a straight line before landing

○ This will be communicated by an interpolation of color from red to green.

○ An airport will also need time to clear the landing zone for subsequent
landings

● Circling

○ To increase odds of success in landing players will need to queue planes to
circle an airport to provide enough time for others to land.

● Scoring

○ A player will be awarded points for 2 Factors of their gameplay

○ Speed and Altitude limits while approaching destination

○ Risk is assessed by proximity to other planes during flight

Prior to implementation and testing the most logical approach to designing the game
elements of the application is to start with only what is necessary for the player initially
and subsequently introduce new elements. It is proposed that in the first stage the player
will only be required to tell a plane when to land. Following landing responsibilities
would be introduced per stage in the following sequence:

1. Circling and Landing

2. Plane and Path Selection

50

3. New Vehicle Classes

4. Scoring System

5. Additional Hazards

The scoring system introduction at this stage suggests that prior to this the player is not
penalized for being non-punctual or risk averse prior to this. This design choice will
likely be subject to adjustment based on the outcome of user experience testing. Which
elements are effective at improving the user experience and added to the application will
depend very heavily on the results of this testing. The additional hazards mentioned
imply that once the application is complete additional features such as weather warnings
or fuel shortages may be introduced in order to increase pressure on the player and add
variety to the experience if the current model is overly monotonous.

4.5 User Interface Design

The approach taken to user interface design for the purposes of this application echoes
the rest of the design. It is necessary that in order to fulfil the purpose of simulation that
the look and feel is similar enough to actual air traffic control interfaces however it is also
necessary that it be readable by an entry level user.

Figure.27 A Mobile Game Interpretation - (Source: statgrid, 2015)

51

From Fig.27 it can be observed a mobile game simplification of the kinds of systems used
in reality. The user interface in this example is fairly simple and intuitive while extensive
training is typically required in order to interpret systems used in an official capacity.

Figure.28 Professional ATC Software - Watchkeeper Unmanned Aircraft System (UAS)
(Source: EDR, 2015)

The proposed design for the main module of this project’s application will make use of
systems implemented in video games such as minimaps, panning and zooming as well as
screen edge indicators in order to bolster a UI similar to that which was demonstrated in
Endless ATC for mobile. The colour scheme and typeface will also maintain the look of
these examples with a large priority placed on visual clarity above aesthetic appeal.

52

Figure.29 Early Mockup of Design Language for UI

Airport Selected Plane Edge
Indicator

Minimap Node

User’s
objective

Displays this
plane’s controls

Indicates off
screen plane

Displays whole
environment

Path joint

From the above user interface suggestion one of the key differences is the use of symbol
language to communicate rather than text where possible. It is essential to understand that
in this iteration a player can use the mouse or arrow keys to navigate freely the area their
viewport examines or even zoom in or out as appropriate. The colours used in this
example are to differentiate elements and are not necessarily representative of the final

53

scheme which will likely lend heavily from the green and black color scheme heavily
associated with these kinds of applications.

The font chosen for this application was heavily influenced by in-depth research
performed by Helena Reed on the subject matter specifically regarding fonts chosen for
air traffic control applications.. (Reed, 2017) This research presents ‘verdana’ as a viable
choice for its comprehension and visual clarity.

In order to facilitate the likely high quantity of controls and on screen information it is
proposed the user HUD (‘heads up display’) be broken down into a series of panels that
may be toggled in and out of view of the screen. These sliding panels will allow the user
to have a clearer view of the detailed environment without being impeded by the user
interface elements that are not currently pertinent to them. By offering the user agency
over the contents of the display it is believed that the user will not allow themselves to be
overburdened by visual noise.

The three proposed panels are as outlined below.

Info Panel

This panel, which is the smallest, will contain non-interactable information and is
intended to merely inform the user of elapsed time and progress. By conveying the score
the user may gain a better understanding of when they have done something of merit
however if the user would rather close this panel to attain greater clarity the option will
exist.

Control Panel

This panel, which will display once a plane has been selected, will display all of the
relevant information for that plane such as its callsign, speed and altitude. Below this
display will be buttons and handled sliders which allow users to adjust the plane's
trajectory by any means.

List Panel

This panel displays a list of all inbound aircraft which need to be landed. As planes arrive
or are landed the list will dynamically adjust its length. Each of the listed planes may be
interacted with in order to smoothly navigate the camera to center on the plane.

54

Figure.30 User Interface Layout with Sliding Panels

55

5. Implementation

This chapter will discuss the method undertaken in the implementation of each
component of the system. The application’s components are defined in three parts, the
data processes which refers to all data preparation and the means by which it is accessed,
the object logic which refers to the scripts which define the relationships and interactions
between the various objects and the means by which resultant actions are taken, and
finally the game logic which governs the systems handling user interaction, user interface
navigation and scoring.

5.1 Components

5.1.1 Data Processes

The data required to inform the positions of the node network of Dublin Airport was
resourced at the Irish Aviation Authority's website in the form of a .pdf file (see
Appendix A, p.110-113). In order to use this data in the application, it was ideal for the
data to be arranged in a .json structure so as to enable the nodes to be treated as objects
with properties. The first stage in this conversion process was to convert the file to an
excel file using simplifyPDF (Simplify PDF, n.d.). The result of this was unfortunately
imperfect as the data in the .pdf table was unclear in its structure. Within Excel the data
then needed to be reformatted into a form that could be converted to .json using
beautifyTools (Excel To Json Converter - BeautifyTools.com, n.d.). In order to modify the
table structure, excel formulae were written to normalize relevant data.

Figure.31 Original PDF to Excel Conversion

56

Figure.32 Final formatted data

Figure.33 Example of resultant object in paths.JSON

The resulting .json file would then need to be prepared for use with the unity engine’s c#
scripts. The solution to this was implemented in the JSONReader.cs script. The initial
step was to use Unity’s Serializable system to create a struct which could accept the data
and convert to an object many times.

[System.Serializable]

public class Path

{

public string PathName;

public string NodeName;

public float Latitude;

public float Longitude;

public float SpeedLimit;

public float UpperAlt;

public float LowerAlt;

}

57

[System.Serializable]

public class PathList

{

public Path[] path;

}

public PathList pList = new PathList();

Figure.34 Structure of node object as defined by JSONReader.cs

pList = JsonUtility.FromJson<PathList>(textJSON.text);

foreach (object o in pList.path)

{

Figure.35 How the objects are populated for each object in the .json file

Once the objects are created with all of the necessary components the next significant
task is in the conversion of latitude and longitude data to x and y coordinates. In unity the
x and y coordinates for an object in world space are stored within the first two parameters
of a Vector3 property located in the object’s transform component. In order to account for
the curvature of the Earth when moving latitude and longitude data to a flat surface the
most typical approach is to make use of a mercator projection. To this end google map
services SDK was imported to the project as it contains a convenient function in its
library ‘LatLngToVector3()’ which performs this projection.

const latLngToVector3 = (latLng, radius) => {

const phi = Math.PI * (0.5 - (latLng.lat / 180));

const theta = Math.PI * (latLng.lng / 180);

const spherical = THREE.Spherical(radius || latLng.radius || 1, phi,

theta);

return new THREE.Vector3().setFromSpherical(spherical);

};

Figure.36 Three.js approximation of Google Maps SDK LatLngToVector3 function
which is inaccessible

The use of this function initially provided the desired results however as development
continued under this implementation it became apparent for the use case that the google

58

SDK protects many parts of it’s functionality from view by users. This resulted in a loss
of precise control in the development process such as being unable to define the desired
size of the space used for projection and instead being given pre-defined map chunks. An
alternative simpler method was used for the specific use case of developing the Dublin air
space which does not account for the Earth’s curvature. A mapping function which allows
for the input of upper and lower limits for the provided value and returns a new value
based on new limits was implemented.

public float Map(float s, float a1, float a2, float b1, float b2)

{

return b1 + (s - a1) * (b2 - b1) / (a2 - a1);

}

Figure.37 Mapping function for redefining value from one range to another

This function allows the minimum and maximum longitude and latitude to be mapped to
the minimum and maximum x, y coordinates respectively. The result is then provided an
artificial buffer to the values in order to adjust any discrepancies.

The size of the air space being projected has an exponential effect on the relative
accuracy of the positions being mapped using this method. The smaller the portion of
earth being projected the less significant the inaccuracies appear using such a method.
For the specific use case of Dublin airport this accuracy is still within a very high margin
however in order to scale for larger potential air spaces such as in central Europe a more
permanent solution for mercator projection which allows for a larger number of controls
may be required.

59

Figure.38 Google Maps SDK projection with space limits and original pdf image above.

60

Figure.39 Highly inaccurate projection prior to mapping function using no mapping
method

Figure.40 Final accurate projection with controllable world space and objects grouped
into paths

Overall the implemented solution was sufficient for the scope of the application and
succeeds in the goal of allowing access to various complex data types to a functional
format for a two dimensional space. There remain potential improvements to this aspect
of the project in the form of hosting the data in an API and potentially retrieving it during

61

runtime to save on memory if the user intends to use multiple air spaces. The scalability
this would provide to the project would be highly valuable however there is a large
quantity of administrative labour involved in the process of converting incomplete pdf
data to their usable format despite attempts to automate it and as such was determined to
fall outside the scope of the project’s primary intent.

5.2 Object Logic

The objects, their functionality and their interactions with one another are defined here as
object logic. The three primary object types are planes, nodes and paths with the basic
structure being such that nodes are children of paths and have their positions informed by
the path structure. Planes then use nodes to navigate the environment. The primary
method that objects are identified in code is through the use of unity ‘tags’. This allows
objects to be efficiently searched for by type using one of Unity’s many in-built
functions.

var GameObject[] nodes; // nodes is declared as an array of game objects

nodes = GameObject.FindGameObjectsWithTag("Node"); // gets all nodes

Figure.41 Example of Search for other objects by tag

Each object described in this section has an instance of one or many scripts attached to it,
some of which execute each frame. For this reason it is essential that searches for other
objects and actions taken to modify other objects are performed only when necessary and
that unnecessary checks are avoided in order to save processing time. Objects may
modify variables or execute functions in scripts belonging to other objects through the
use of the ‘GetComponent<scriptname>()’ family of functions provided they are publicly
declared rather than static. This is a fast and effective way of accessing not just scripts but
other functional components of objects such as renderers.

closest =

GameObject.Find("Controller").GetComponent<Controller>().FindClosestNode(tra

nsform)

Figure.42 Example of GetComponent

62

5.2.1 Nodes and Paths

In order to structure the order that planes travel between nodes, a structure is defined
using the path objects. Path objects are manually created empty game objects which hold
a script - ‘pathScript.cs’, which sorts all of the child objects belonging to it and assigns
them identification numbers according to their order in the hierarchy. The paths lead into
one another according to ids that are manually assigned in the engine using the interface.
This hierarchical structure allows for the most efficient approach to creating a directional
network.

public class pathScript : MonoBehaviour

{

public int id = 0;

void Awake() //on awake

{

int i = 0;

foreach (Transform child in transform) //searches in grandchildren

for nodes

{

foreach (Transform subChild in child)

{

if (subChild.gameObject.tag == "Node")

{

subChild.GetComponent<nodeScript>().pathId = id;

//assigns the node's path id

subChild.GetComponent<nodeScript>().id = i; //assigns

the node's id

i++;

}

}

}

}

}

Figure.43 pathScript.cs id assignment loops

Figure.44 Example of Interface being used to assign path ids

63

The node object is instantiated from a prefab at each defined latitude and longitude point
upon initial load. The object itself is displayed as a small coloured circle and has many
attached components including two scripts, one for all of it’s behaviours and another to
hold its object data. Once all the nodes have been sorted into paths and the path has
assigned all the nodes and id the nodes then perform a function FindNextNode() to find
the node in its path with the next numerical id to their own. This is achieved by searching
for all objects with the node tag and storing them in an array. This array is then filtered
for nodes sharing a path id with the node in question and then returning the next node in
the sequence. With this information the node stores the it’s next node as a variable to be
used later by plane objects and using a line renderer component, draws a line to this
location. Exception cases have been included in this function to handle the first and last
nodes in a path which have slightly differing behavior. They instead point to the first
node in the next path in the sequence or if this is the final path, to the landing node.

private void Start() // executes only once on program start

{

if (nextNode == null && !isLandingNode)

{

nextNode = FindNextNode(); // assign next in sequence

x = 0;

}

}

void Update()

{

if (!isLandingNode)

{

//assigns id of the parent path

pathId = transform.parent.parent.GetComponent<pathScript>().id;

//draws straight line to next node

line = GetComponent<LineRenderer>();

line.SetPosition(0, transform.position);

line.SetPosition(1, nextNode.transform.position);

}

}

Figure.45 nodeScript.cs, find next node in path, assign parent path id and draw line

The node objects aside from having the attached line renderer component also have a
collider attached to allow for detection of objects that enter or leave it’s airspace. The
collision events regarding this component are handled by the plane object.

64

Figure.46 Node collider is the green circle surrounding the joint.

An alternate version of this node and path system exists in the application in the form of
curved paths. These paths, generated by the bezierScript.cs create allow for the creation
of paths with curvature and automatically generate their own nodes with adjustable
resolution of nodes. This is necessary when creating holding patterns for planes to enter
and follow indefinitely while waiting for permission to land. Using Unity’s ‘Gizmos’
allows for modification of the handles of these curves in the editor allowing for precision
when being designed.

Figure.47 & 48 Bezier paths being created in editor on left and the resultant node
structure on right - bezierScript.cs

The effect of these curves is achieved by utilising the DeCasteljau’s algorithm which
involves acquiring the midpoints of the start and end points of each curve as well as its
handles iteratively in layers so that nodes can be placed at a specific percentages along
the path according to the desired resolution using a Catmull-Rom spline. The version of
this algorithm in effect here is a modified version of its transposition to C#.

65

Figure.49 Example of Catmull-Rom Spline using CastelJau's Algorithm to solve for
midpoints (Source: Everything about interpolation in Unity with C# code - Bezier curves
| Habrador, n.d.)

5.2.2 Planes

The plane object is the only moving component in the application and as such is the
trigger for the majority of events that occur during runtime. This means it has been a
priority to ensure that the method of motion for these vehicles is as authentic as possible.
To this effect an interpolation is used to angle the plane’s forward direction toward it’s
target over time according to it’s turning speed. This results in a gradual movement which
softens as it arrives at its desired angle. The second component of this rotation refers to
locking the object to the two dimensional plane while preserving a Vector3 object as there
is lesser functionality for physics available for Vector2 transforms.

if (target != null)

{

transform.up = Vector3.Lerp(transform.up,

(target.transform.position - transform.position), turnSpeed); //rotate

towards target node

transform.eulerAngles = new Vector3(transform.eulerAngles.x, 0,

transform.eulerAngles.z); // locks y axis rotation

} else

{

transform.up = Vector3.Lerp(transform.up, transform.forward,

turnSpeed); //Angle forward

transform.eulerAngles = new Vector3(transform.eulerAngles.x, 0,

transform.eulerAngles.z); // locks y axis rotation

}

Figure.50 Plane turning logic, angles toward target

66

rb.AddForce(transform.up * thrust);

Figure.51 Acceleration using the rigidbody component to apply thrust using the physics
engine.

The thrust applied to the vehicles is informed by the rigidbody component attached to the
plane which allows Unity’s physics engine to apply forces to it. AddForce() was used
here rather than translating or interpolating the object’s position as this allows for a
reliable method of collision detection and applies appropriate restrictions to the possible
methods of movement due to the nature of velocity.

Figure.52 Planes following a path of nodes, automatically adjusting heading

As the plane makes contact with the colliders attached to other objects in the environment
a set of behaviours defined within Unity’s in-built OnTriggerEnter2D() function are
initiated. Depending on the tag associated with the collided object, different groups of
logic are executed. The most frequent of these is when a plane enters the exterior circular
area of a node and is assigned a new target node; however scoring and landing logic are
also handled here and are associated with collisions with other planes and the landing
node/airport.

void OnTriggerEnter2D(Collider2D col) //returns collider of other object

{

if (col.gameObject.tag == "Node" && col.gameObject == target &&

!col.GetComponent<nodeScript>().isLandingNode)

{ //node collision logic

if(col.GetComponent<nodeScript>().nextNode != null)

{

67

target = col.GetComponent<nodeScript>().nextNode;

Figure.53 Portion of commands executed upon collision with node

0

foreach (GameObject node in nodes)

{

Vector3 diff = node.transform.position - position;

float curDistance = diff.sqrMagnitude;

if (curDistance < distance)

{

closest = node; // assigns closest node

distance = curDistance;

}

}

foreach (Transform child in closest.transform)

{

foreach (Transform subChild in child)

{

if (subChild.gameObject.tag == "Node")

{

n = subChild.gameObject;

}

}

}

return n;

Figure.54 Distance calculation in ‘StartHold()’ function in planeScript.cs

Figure.55 Plane STK 015 enters holding pattern(in light blue)

68

As is apparent in the above example the planes are also assigned a call sign according to
Dublin airport naming convention. This is generated automatically to be unique upon the
plane's instantiation by drawing from an array of these standard codes and concatenating
them into a string and comparing to existing callsigns to exclude duplicates.

string GenerateName()

{

string[] prefix = {"BCY", "EIN", "IBK", "RYR", "SZS", "STK" };

return prefix[Random.Range(0, prefix.Length)] + " " +

(Random.Range(0, 9)).ToString() +

(Random.Range(0, 9)).ToString() +

(Random.Range(0, 9)).ToString();

}

Figure.56 Callsign name generation function - planeScript.cs

The plane, node and path relationship is robust and reliable in it’s purpose of informing
the vehicle's direction automatically. It contains an easily traced sequence of events to
follow for the implementation of additional features or logic at any stage in the sequence
which enables the game structure to be built on top of it. With regards the complexity of
the automation component of this network, it was originally designed with the intention
of deeper levels of complexity however upon the implementation of user controls the
costs involved with a more reactive AI only served to detract from the amount of
interactivity present in the application.

5.3 Game Logic

The Game logic pertains to the elements of interactivity that are present in the application
as well as the structure of the user interface objects and the gamified scoring system. In
order to organise the code into various places without creating an overabundance of small
scripts a system was developed to break down the non-object functionality below a
certain size. The ‘Controller.cs’ script handles the player input and interaction as well as
user interface element manipulation while the ‘GameManager.cs’ script is responsible for
the majority of game flow management such as score and time keeping as well as
keeping and object instantiation. There are several large modules however such as the
camera and edge indicators which are contained in their own scripts in order to be more
easily accessible due to their complexity and the frequency with which they interact with
other game objects.

69

5.3.1 Sliding Panels

Following the design specification for the user interface, there are several panels
implemented with varying functionality; however the first stage of implementation of
these features was the means by which the UI elements are accessed. The panels can be
clicked to slide in and out of view of the screen enabling a clear view of the game
environment is possible at all times.

To achieve this functionality the application makes use of an external library called
‘LeanTween’ (Dented Pixel, n.d.). This allows the panels to simply interpolate their
positions based on their current state between two predefined points. This is a necessary
alternative to using standard unity features for this functionality as usually any animation
taking place on Unity’s UI canvas causes a complete redrawing of every asset on the
plane each frame. With LeanTween we can move the objects using programming and
avoid the use of key frame animation and state machines.

public void SlidePanel(GameObject p)

{

if (selected != null || p.name != "PlanePanel") {

var pd = p.GetComponent<PanelData>();

if (p.GetComponent<RectTransform>().position.x <= pd.inPos) {

LeanTween.moveX(p, pd.outPos,

0.4f).setEase(LeanTweenType.easeOutQuad);

p.GetComponent<Image>().sprite = pd.inSprite;

pd.state = true;

} else

{

LeanTween.moveX(p, pd.inPos,

0.4f).setEase(LeanTweenType.easeOutQuad);

p.GetComponent<Image>().sprite = pd.outSprite;

pd.state = false;

}

}

}

Figure.57 Slide Panel function in Controller.cs

70

Figure.58 Describing Unity button behaviour

In order to avoid writing multiple functions for each panel, the panel itself holds data for
the positions it means to target in a script ‘Panel-Data.cs’. These are then passed to the
function as parameters when the button is pressed and the panel is animated accordingly
based on its current state which is stored as a boolean. The opportunity is then taken to
reverse the direction of the arrow on the panel by replacing it’s sprite.

Figure.59 & 60 Above panels slid outside of the viewport. Below game view of the
above

71

5.3.2 Input

In order to establish a means of player interactivity in the application it was expected that
the player would be using a mouse. To get information from a mouse click in Unity the
application makes use of raycasting. When the mouse is clicked a hypothetical laser is
drawn from the camera point that was clicked forward into space until it collides with an
object. This point of intersection is stored in the controller script as the variable ‘rayhit’.
The ‘rayhit’ object contains information regarding the gameobject that its intersection
occurred on and can therefore be used to initiate various functionality.

if (Input.GetMouseButtonDown(0)) //on click

{

RaycastHit2D rayHit =

Physics2D.GetRayIntersection(Camera.main.ScreenPointToRay(Input.mousePositio

n)); // object reference to intersection point

//on click plane

if (!angleSelectMode && !nodeSelectMode && rayHit.transform !=

null && rayHit.transform.gameObject.tag == "Plane") // if rayhit object is

plane

{

SelectPlane(rayHit.transform.gameObject);

}

Figure.61 Mouse input with on plane click Controller.cs

The first piece of relative interactivity was to allow users to select a plane in order to see
information regarding it and control it. In order to achieve this the controller stores the
plane in a gameObject variable. This calls a function called ‘SelectPlane()’ executing
several commands. A ring which exists out of the game bounds to that plane’s position
and childed to it to maintain its relative position to the plane indicating that it has been
selected, the plane draws a line to show its intended path and then the control panel slides
out and the plane's variables are fed into the information section for display. The sliders
in the control panel beneath it also adjust their fill amount to the appropriate level for the
selected plane.

public void SelectPlane(GameObject r)

{

if (selected != null) //confirms first click

{

72

PanelAnim(panel); // toggle slider position

selected.GetComponent<LineRenderer>().enabled = false; //turn

off renderer of previous

}

else

{

selected = r;

panel.GetComponent<Button>().onClick.Invoke(); //activates panel

button

}

GameObject plane = r;

selected = plane;

slider.value = plane.GetComponent<planeScript>().thrust;

selector.SetActive(true);

selector.transform.position = selected.transform.position; //move ui

hover to plane

selector.transform.SetParent(selected.transform);

}

Figure.62 SelectPlane() function in Controller.cs

Figure.63 Selected Plane with panel displaying its data. Blue ring to indicate selection
and green projected path to show intent

This same click functionality is used with nodes to activate and deactivate a dropdown
menu containing information about the speed and altitude information on that node.

73

Figure.64 Clicked node displaying dropdown data

The control elements on the panel itself are made up of Unity’s sliders and button
components . The slider’s simply adjust the variables of the selected plane while the
buttons execute specific functions which change the behaviour of clicks. The auto button
activates a variable named ‘NodeSelectMode’ which causes the next click, should it
target a node to set that node as the selected plane’s target while the manual button
activates ‘AngleSelectMode’ which instantiates an invisible object at the location the the
next click and sets that as the planes target. These buttons allow the user to control the
plane’s path either by choosing its automated path or alternatively giving it a specific
heading.

if (nodeSelectMode)

{

if (rayHit.transform != null &&

rayHit.transform.gameObject.tag == "Node")

{

selected.GetComponent<planeScript>().target =

rayHit.transform.gameObject;

nodeSelectMode = false;

}

}

if (angleSelectMode)

{

selected.GetComponent<planeScript>().target =

tempObject.transform.gameObject;

angleSelectMode = false;

}

Figure.65 The angle and node select mode clauses for click behaviour

74

Finally there is a checkbox element which simply toggles a boolean used to determine if
a plane should enter a holding pattern or proceed to land when encountering a
‘HoldingSwitch’ node.

The final user interactable element of the interface is the list panel. This panel allows the
user to not only see the callsigns of the incoming planes but also to click any of the listed
names to lerp to camera to center on the corresponding plane’s position.

Figure.66 example of info panels

In order to accomplish this the list was established as an array ‘infoPanels’, which is not
rendered unless it has text content. Text content is then assigned by looping through each
of the buttons in the panels for each plane in the scene, assigning that plane’s callsign as
the text. This way the panels automatically enable and disable themselves for the quantity
of planes in the scene.

//handles info list panel

planes = GameObject.FindGameObjectsWithTag("Plane");

foreach (GameObject i in infoPanels)

{

if (i.GetComponentInChildren<Text>().text == "")

{

i.GetComponent<Image>().enabled = false;

} else

{

i.GetComponent<Image>().enabled = true;

}

75

}

int smallerArray = infoPanels.Length;

if (planes.Length < infoPanels.Length)

{

smallerArray = planes.Length;

}

for(int i = 0; i < smallerArray; i++) // informs info panels

{

infoPanels[i].GetComponentInChildren<Text>().text =

(planes[i].GetComponent<planeScript>().call);

}

Figure.67 code in function UpdateUI which handles the info panel - Controller.cs

5.3.3 Camera

The behaviour for the purposes of user control is that it may be panned about the
environment using arrow or ‘wasd’ keys as well as zoomed in and out using the mouse
scroll wheel. This was implemented in the script ‘CameraMove.cs’ which utilizes the
unity input axes system to translate the camera’s position according to a variable; speed.
The use of input axes rather than listening for specific key presses allows for not only a
large reduction in the required code but also allows for scalability should the project
eventually include input from devices other than mouse and keyboard as the inputs have a
generic set of expected inputs depending on the device in use.

Figure.68 Camera’s publicly accessible variables for in-editor adjustment

76

The camera zoom makes use of the ‘Mathf.Clamp’ function to set a floor and ceiling for
the size of the camera’s viewport by accessing the camera’s ‘orthographicSize’
component.

float xAxisValue = Input.GetAxis("Horizontal") * Speed;

float yAxisValue = Input.GetAxis("Vertical") * Speed;

scrollValue = Input.GetAxis("Mouse ScrollWheel") * zoomSensitivity;

transform.position = new Vector3(

Mathf.Clamp(transform.position.x + xAxisValue, minX, maxX),

//limits bounds

Mathf.Clamp(transform.position.y + yAxisValue, minY, maxY),

transform.position.z);

zoom -= scrollValue;

zoom = Mathf.Clamp(zoom, zoomMin, zoomMax);

Camera.main.orthographicSize = zoom;

Figure.69 Camera controls as executed each frame according to inputs

This script also adjusts the scale over text and UI elements as the screen is zoomed in
order to maintain readability of user interface elements in the game environment as the
screen becomes larger or smaller. This is achieved for text by simply adjusting the font
size to be a factor of the zoom value after each change while with more complex
graphical elements such as the screen edge indicators, there are zoom amount breakpoints
which rescale the objects to appropriate sizes.

Figure.70 Two versions of highly zoomed out image of small section of screen with no
rescaling on left

77

5.3.4 Other UI elements

It became apparent during gameplay implementation that there were difficulties keeping
track of off screen planes and their movements and as such a system was developed to
subtly highlight the direction and distance of off screen planes. These edge indicators are
placed at the edge of the screen nearest their corresponding plane and display the distance
to that plane as an integer.

float tempx = Mathf.Clamp(plane.transform.position.x,

leftLimitation+objectWidth, rightLimitation-objectWidth);

float tempy = Mathf.Clamp(plane.transform.position.y,

upLimitation+objectWidth, downLimitation-objectWidth);

transform.position = new Vector3(tempx, tempy,0);

Figure.71 Snippet of ‘EdgeInicators.cs’ showing the movement attempted by these UI
elements

This is achieved by having each plane’s edge indicator only render while that plane is not
currently being rendered by the camera which is determined using unity’s ‘visible’
property. The edge indicator itself is clamped to the screen bounds and is in a constant
state of attempting to move towards it’s plane within these bounds.

Figure.72 Edge Indicators in red circles showing the approximate location of off-screen
planes

The hypothesized minimap was implemented using an additional omnipresent camera
which displayed an overall view of the environment; however this was an expensive

78

module as it caused all objects to be rendered twice as well as providing significant
clutter to the user interface layout and as such was removed from the final version of the
application.

Figure.73 Minimap module in test environment

5.3.5 Game Manager and Scoring

The ‘GameManger.cs’ script is responsible for the time and event management during
game run time. This script is an instance and therefore does not exist on a specific object,
allowing it to be referenced from other scripts with ease as an object reference is not
required.

The ‘InvokeRepeating()’ function is used to recurrently call a function which creates new
planes at appropriate time intervals at appropriate locations. These locations known as
spawn points are stored in an array of out of bounds objects which can be adjusted
conveniently in the editor to create multiple scenarios for gameplay variety. The rate at
which the planes spawn is also dynamically adjusted according to in-game performance
and time elapsed with the quantity and frequency increasing as time goes by.

private void Start()

{

InvokeRepeating("SpawnPlane", spawnTime, spawnInterval); //called

recursively at every interval

}

Figure.74 ‘GameManager.cs’ InvokeRepeating() function accepting adjusted variables.

79

Due to the already established nature of the collision based event structure of the in-game
objects it was convenient to simply alter the score variable stored here by amounts based
on the type of event. Each time a plane successfully reaches a node a score is given based
on several factors such as if the plane is at the appropriate speed limit and altitude for that
node as well as upon landing. Score is decremented for the amount of time planes are
within an unacceptable range and altitude of one another also. The time taken to land a
plane is also considered and any time less than four minutes results in additional points
earned.

5.3.6 Menus

The final necessary feature of the application is a series of menus that may be navigated
to determine which components of the model to load. This was achieved using Unity’s
scene management library in a script named ‘SceneManager.cs’. This script simply
contains functions which load scenes according to an array index which is organized in
the build settings. To access these functions, new scenes are created containing buttons
which directly call to this script.

public void MainMenu()

{

UnityEngine.SceneManagement.SceneManager.LoadScene(0);

}

Figure.75 Example of function called by button to return to the main menu at scene index
0 ‘SceneManager.cs’

The result of this structure is a highly intuitive and functional set of navigation tools so
that the user can access their intended portion of the application.

Figure.76 Basic main menu structure

80

5.3.7 Deployment

Building the application for the target platform of Windows and Mac was achieved using
unity’s build tools. This allowed me to produce a high performance standalone
application with only the necessary files in their most compressed form. The building
tools also permit for the inclusion features such as splash art when launching the
application as the selection of a desktop icon.

Figure.77 Unity’s build setting menu

The scenes and the order they are defined in unity’s build settings are finalized during
this process as well as the target resolution among other presentation options. The
resultant group of files produced includes a convenient ‘.exe’ file which launches the
game on execution.

81

6. Testing

6.1 Introduction

It was essential to perform testing of the application at all stages of development in order
to assure the application was meeting the expectations of the design specifications and
not causing issues either in the generation of unintended behaviour and in overall
performance. To this end the test plan as outlined in ‘Requirements and Feasibility’ was
carried out.

6.2 Unit and Integration

Unit tests are performed in unity using the test runner window which allows test scripts to
be executed which provide assembly references to the script being tested. These are then,
for the majority of cases within the project, tested by comparing expected values to those
that are returned. This system allowed the development process to be iterated upon
without concern regarding foundational code units behavior.

namespace Tests

{

public class PlaneTest

{

[UnityTest]

public IEnumerator NewTestScriptWithEnumeratorPasses()

{

var gameObject = new GameObject();

gameObject.AddComponent<planeScript>();

var n =

gameObject.GetComponent<planeScript>().FindClosestNode();

yield return new WaitForSeconds(1f);

Assert.AreEqual(expected: "Node", actual: n.tag);

}

}

}

Figure.78 Example of Unity PlayMode Unit Test for Plane function

82

In this example the ‘FindClosestNode()’ function is tested by determining if the return
object is in fact an object with the node tag by using the ‘Assert.AreEqual’ method which
accepts an expected and actual value as parameters to compare.

By testing many components in conjunction in this way, the integrated parts were
confirmed to be functional. This testing framework provided a stable structure for tracing
and debugging issues throughout the development process.

6.3 System Testing

Performance testing over the overall system was carried out at regular intervals in order
to determine that the new components were not resulting in unacceptable frame per
second values.

The method through which performance was monitored in Unity was the profiler tool.
This records the usage of CPU and GPU resources per frame and produces detailed
graphs and reports on the execution times of each component and script.

Figure.79 CPU and GPU usage spike in Unity Profiler for completed application

83

In this graph displaying CPU and GPU usage of the application during runtime it can be
observed that spikes to approximately 60 FPS occur. These spikes occur at the beginning
of each frame as the next frame is processed using the latest positional data. The custom
scripts written by me can be seen in blue and make up less than 8% of the overall process
per frame.

Figure.80 Breakdown of CPU usage spike not including standard processes
demonstrating less than 1ms response time

Figure.81 Closeup of processes in execution

As the bulk of processing is made up of the Unity Engine’s standard rendering processes
it stands to reason that of the custom scripts written for the application, the slowest
response time belongs to the camera movement script as this trigger re-renders upon
usage. These response times are still well within tolerable levels, however there were
points in development such as with the inclusion of the minimap module which contained
a second camera that the performance fell outside of these limits.

84

Figure.82 Memory usage graph during runtime

Memory usage also does not exceed the automatically allotted 315mb and is stable
throughout gameplay, the reason for this being that the application is designed such that
assets are, with the exception of changes in scene, not making calls to load different
assets into RAM.

6.4 User Testing

In order to assess users' comprehension of the application and the intuitiveness of the user
interface system, five users were asked to use the application and play the endless mode
for five minutes, record their score and then repeat this process twice more. The users
score at the end of each round as well as the number of planes landed was recorded and
have been graphed below using tableau software Fig 83. The scores awarded are
primarily earned through landing planes however additional opportunities to earn points
through effective use of the node network as well as time efficiency exist. For reference
the highest score recorded at this stage of game balancing inside this time frame was
17,740 with this being achieved by a user very familiar with the application. Prior to
testing users were shown an image of the interface and provided a brief description of
how these elements would function and what their goals would be onced the simulation
began.

85

Figure.83 User testing graph of scores from three 5 minute sessions

From this graph it can be observed that the users’ scores always trended upwards with no
user ever producing a lesser score than the previous attempt. This analysis also
demonstrated the variability in user competency for the application with there being a
potentially quite steep learning curve for certain users.

This testing was performed in order to assess the requirements of the training portion of
the application through the determination of which components of the program were least
intuitive and how best users could be introduced to them. It was highlighted by many
users that, in particular the method holding patterns and clearing to land was the least
intuitive portion of the design and as such will be addressed among other valuable
insights. While the methodology for the testing was informal and therefore does not
produce any reliable outcomes, the primary objective of its undertaking was in the
improvement of the applications features and future development.

86

7. Results and Analysis

7.1 Development Analysis

The results of this project were in the successful creation of an air traffic control software
through the implementation of motion planning techniques. The components that were
implemented in order to fulfill this object were a simulation environment occupied by
objects with interaction behaviours, a user interface system which would allow for
intuitive interactions and user agency and a data system for interpreting real world data
and converting that to a simulated environment.

The project also succeeded in delivering an application which could handle a large
number of simulated objects in real time without loss in any significant performance or
integrity. This allowed the experience of the application to be unhindered by these
factors, leading to more consistent results.

At the outset of the project there were several components proposed that were tested such
as the inclusion of several user interface elements like a minimap or a user accessible
data input system. These components were either removed due to incompatibility with
the project's main goals or falling outside the scope of these goals.

7.2 Ludic Simulation Analysis

This application, as outlined as one of the key aims, incorporated the gamified elements
in it’s user incentive design through a scoring system and user interface style. This was
achieved while adhering as closely as possible to the design as outlined by traditional air
traffic control systems. The combination of both of these elements was successful in
increasing the accessibility of otherwise very advanced features, while highlighting the
difficulty in creating a middle-ground between entertainment and functionality.

It was observed throughout development, the tendency to lean more heavily on the side
of game or simulation. The benefits of the game format being increased user engagement
through the evocation of adrenaline or catharsis whereas the benefits of simulation seem
to lie more in the realm of immersiveness via realism and accuracy. It required rigorous
planning and constant readjustment to remain on the course of creating an application
between these spaces so as to observe the potential benefits.

87

It could be argued that ludic simulations such as these are niche in their potential
application areas as many softwares would prefer to be constructed with the more rigid
model of game or simulation, however in this instance, with the project goal being to
create a training tool to a potentially inaccessible subject matter, that it was appropriate.
The air traffic control application that was developed is likely to give users the greatest
possible understanding of the operations and responsibilities carried out by air traffic
controllers without alienating the users with the assumption of necessary prerequisite
knowledge.

88

8. Conclusion

It was the intention of this project to explore the possibility of use cases for motion
planning in the creation of simulation applications. To this effect the project broke the
development into three key stages. The preparation of data which was accomplished
through various conversion processes. The development of the simulation environment
and object behaviours which was achieved through utilization of the Unity game engine
and finally the development of an intuitive and highly modular user interface system.

This project proposes that there is value in the use of motion planning techniques in the
development of any partially automated software which involves a simulation
environment as it was the research and implementation of technologies in this area that
most significantly enabled the application’s goals.

The secondary project aim was to explore the potential of software developed in the
nebulous space between game and simulation dubbed ‘ludic simulation’. This was
executed through the use of gamification techniques in the scoring system, user interface
style and general object relationship model present in the application.

The implications of the use of this type of technology in creating applications lie
primarily in the increase in accessibility for the introduction of complex systems to the
general user. It is proposed that when considering the development of a simulation
software that the inclusion of gamified elements at the expense of realism may only be
valid if the intended users experience level of the subject matter is already relatively low.
With users highly familiar with the simulated space being more likely to gain more from
a more traditional simulation.

The application was developed with scalable systems that could be expanded on to
greatly improve the potential value of the product. With larger data sets the current model
of local .json storage could be pulled from an API or a feature could be implemented to
allow users to create and edit their own preferred node network layouts. These features
alongside general aesthetic improvements may lead to greater reach and applicability for
this project in the future.

Finally, it should be noted the potential to modify the model used in this application and
apply it to other traffic systems using node based networks and autonomous vehicles such

89

as road or satellite traffic may be possible as very little of the existing object structure
would require large quantities of modification to enable this.

90

9. References (APA)
Abd Algfoor, Z., Sunar, M. S., & Kolivand, H. (2015). A Comprehensive Study on

Pathfinding Techniques for Robotics and Video Games. International Journal of
Computer Games Technology, 2015, 1–11. https://doi.org/10.1155/2015/736138

Ceipek, J. (2010). Game Path Planning. Retrieved December 8, 2019, from Jceipek.com
website: http://jceipek.com/Olin-Coding-Tutorials/pathing.html

Dented Pixel. (n.d.). LeanTween | Animation Tools | Unity Asset Store.
Assetstore.unity.com. Retrieved April 25, 2021, from
https://assetstore.unity.com/packages/tools/animation/leantween-3595

Dubbels, B. (2013). Gamification, Serious Games, Ludic Simulation, and other
Contentious Categories. International Journal of Gaming and
Computer-Mediated Simulations, 5(2), 1–19.
https://doi.org/10.4018/jgcms.2013040101

EDR. (2015, October 18). Thales’s Watchkeeper achieves another first in aviation
history. EDR Magazine.
https://www.edrmagazine.eu/thaless-watchkeeper-achieves-another-first-in-aviatio
n-history

Everything about interpolation in Unity with C# code - Bezier curves | Habrador. (n.d.).
Www.habrador.com. Retrieved April 25, 2021, from
https://www.habrador.com/tutorials/interpolation/2-bezier-curve/

Excel To Json Converter - BeautifyTools.com. (n.d.). Beautifytools.com. Retrieved April
25, 2021, from https://beautifytools.com/excel-to-json-converter.php

Global ATC Simulator. (n.d.). Download Full Games on DFGames.net. Retrieved April
25, 2021, from https://dfgames.net/6664-global-atc-simulator.html

Go, J., Vu, T., & Kuffner, J. J. (2004). Autonomous behaviors for interactive vehicle
animations. Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation - SCA ’04. https://doi.org/10.1145/1028523.1028525

91

https://doi.org/10.1155/2015/736138

Greenky, S. (2019, October 21). WEYTEC and Raytheon Team Up to Enhance Air Traffic
Management Technology. Www.businesswire.com.
https://www.businesswire.com/news/home/20191021005591/en/WEYTEC-and-R
aytheon-Team-Up-to-Enhance-Air-Traffic-Management-Technology

javascript - how to convert latitude/longitude to pixels in 3d using three.js. (n.d.). Stack
Overflow. Retrieved April 25, 2021, from
https://stackoverflow.com/questions/32657688/how-to-convert-latitude-longitude-
to-pixels-in-3d-using-three-js

Jon, D. (2006). If you never fall, you are not really trying. Retrieved from
https://skatgame.net/mburo/ps/thesis_demyen_2006.pdf

Parker, J., & Becker, K. (2014). The Simulation-Game Controversy: What is a Ludic
Simulation? Choosing and Using Digital Games in the Classroom -A Practical
Guide View project. https://doi.org/10.4018/jgcms.2013010101

Permana, S. D. H., Bintoro, K. B. Y., Arifitama, B., & Syahputra, A. (2018). Comparative
Analysis of Pathfinding Algorithms A *, Dijkstra, and BFS on Maze Runner
Game. IJISTECH (International Journal of Information System & Technology),
1(2), 1–8. https://doi.org/10.30645/ijistech.v1i2.7

Reed, H. (2017). EUROPEAN ORGANISATION FOR THE SAFETY OF AIR
NAVIGATION EUROCONTROL EUROPEAN AIR TRAFFIC
MANAGEMENT PROGRAMME Font Requirements for Next Generation Air
Traffic Management Systems.

Reddy, H. (2013). PATH FINDING - Dijkstra’s and A* Algorithm’s. Retrieved December
3, 2020, from studylib.net website:
https://studylib.net/doc/8098164/path-finding---dijkstra-s-and-a--algorithm-s

Reynolds, C. (1999). Steering Behaviors For Autonomous Characters. Retrieved from
https://www.red3d.com/cwr/papers/1999/gdc99steer.pdf

Reynolds, C. (2004). Website Demonstrating Steering Behaviors For Autonomous
Characters. Retrieved December 6, 2020, from www.red3d.com

92

Russell, S., & Norvig, P. (2010). Artificial intelligence : a modern approach. Pearson.

Sakai, A., Ingram, D., Dinius, J., Chawla, K., Raffin, A., & Paques, A. (2018).
PythonRobotics: A Python code collection of robotics algorithms. 1-8. Retrieved
December 2, 2020, from https://arxiv.org/pdf/1808.10703.pdf.

SimpleJSON - Unify Community Wiki. (n.d.). Wiki.unity3d.com. Retrieved April 25,
2021, from http://wiki.unity3d.com/index.php/SimpleJSON

Simplify PDF. (n.d.). Convert PDF to Excel - SimplyPDF. Simplypdf.com. Retrieved
April 25, 2021, from https://simplypdf.com/Excel

Software Testing Levels. (2011, January 5). SOFTWARE TESTING
Fundamentals.https://softwaretestingfundamentals.com/software-testing-levels/sta
tgrid. (2015, December 11). Endless ATC.
https://store.steampowered.com/app/666610/Endless_ATC/

Song, B., Guohui Tian, & F. Zhou. (2010, December). A comparison study on path
smoothing algorithms for laser robot navigated mobile robot path planning in...
Retrieved December 6, 2020, from ResearchGate website:
https://www.researchgate.net/publication/290161139_A_comparison_study_on_p
ath_smoothing_algorithms_for_laser_robot_navigated_mobile_robot_path_planni
ng_in_intelligent_space

Technologies, U. (n.d.). Unity - Manual: Order of execution for event functions.
Docs.unity3d.com. https://docs.unity3d.com/Manual/ExecutionOrder.html

Zafar, A., Agrawal, K. K., & Anil Kumar, Wg. C. (2018). Analysis of Multiple Shortest
Path Finding Algorithm in Novel Gaming Scenario. Advances in Intelligent
Systems and Computing, 1267–1274.
https://doi.org/10.1007/978-981-10-5903-2_132

93

10. Appendices

10.1 Appendix A

94

10.2 Appendix B

95

